4-axis Motion Control Card ADT-8949

Basic Information

This Manual is written by Adtech (Shenzhen) Technology Co., Ltd. This Manual is mainly written by: Ai Xiaoyun.

This Manual was first released on May 12, 2013, with version No. 14.08.29.16 and item number BZ001C057A.

Copyright Notice

The property rights of all the parts of the manual belong to Adtech (Shenzhen) Technology Co., Ltd. (Adtech for short), and any form of imitation, copying, transcription or translation by any company or individual without the permission is prohibited. This manual does not include any form of assurance, standpoint expression, or other intimations. Adtech and the stuffs have no responsibility for any direct or indirect disclosure of the information, benefit loss or business termination of this manual of the quoted product information. In addition, the product and the information mentioned in this manual are for reference only, and the content is subject to change without notice.

ALL RIGHTS RESERVED!

Adtech (Shenzhen) Technology Co., Ltd.

Precautions

• Transport and storage:

- Do not stack product package more than six layers;
- Do not climb, stand on or place heavy stuff on the product package;
- Do not pull the cable still connecting with machine to move product.
- Torbid impact and scratch on the panel and display;
- Prevent the product package from humidity, sun exposure, and rain.

• Open-box inspection:

- Open the package to confirm the product to be purchased by you.
- Theck damages situation after transportation;
- Confirm the integrity of parts comparing with the parts list or damages situation;
- Contact our company promptly for discrepant models, shortage accessories, or transport damages.

Wiring

- Ensure the persons involved into wiring and inspecting are specialized staff;
- For Guarantee the product is grounded with less than 4Ω grounding resistance. Do not use neutral line (N) to substitute earth wire.
- Ensure grounding to be correct and solid, in order to avoid product failures or unexpected consequences;
- Connect the surge absorption diodes to the product in the required direction, otherwise, the product will be damaged;
- Ensure the power switch is OFF before inserting or removing plug, or disassembling chassis.

• Overhauling

- Ensure the power is OFF before overhauling or components replacement;
- The sure to check failures after short circuit or overloading,

and then restart the machine after troubleshooting

Ŧ Do not allow to frequently connect and disconnect the power, and at least one minute interval between power-on and power-off.

Miscellaneous

- Do not open housing without permission; Ŧ
- Keep power OFF if not in use for a long time; Ŧ
- Pay close attention to keep dust and ferrous powder away from Ŧ control;
- Ŧ Fix freewheel diode on relay coil in parallel if non-solid state relay is used as output relay. Check whether power supply meets the requirement to ensure not burning the control.
- Ŧ Install cooling fan if processing field is in high temperature, due to close relationship between service life of the control and environmental temperature. Keep proper operative temperature range for the control: 0° C ~ 60° C.
- Avoid using the product in the overheating, humid, dusty, or Ŧ corrosive environments:
- Ŧ Add rubber rails as cushion on the place with strong vibration.

Maintenance

Please implement routine inspection and regular check upon the following items, under the general usage conditions (i.e. environmental condition: daily average 30°C, load rate: 80%, and operating rate: 12 hours/day)

Routine Inspectio n	Routin e	 Confirm environmental temperature, humidity, dust, or foreign objects. Confirm abnormal vibration and noise; Check whether vents are blocked by yarn
Regular Check	One year	 etc. Check whether solid components are loose Confirm whether terminal block is

Table 1 Equipment Inspection Requirements

Contents

Contents	4
Overview	8
Chapter 1 Product Introduction	8
1.1 DESCRIPTION:	8
1.2 HARDWARE SPECIFICATIONS:	8
1.3 CONTROL FUNCTIONS:	9
1.4 SOFTWARE SUPPORT:	
1.5 APPLICATIONS:	
1.6 ADT-8949 SERIES FEATURES LIST:	
Hardware	14
Chapter 1 Hardware Installation	14
1.1 PACKING LIST:	
1.2 INSTALLATION SIZE:	15
1.3 INSTALLATION STEPS:	15
Chapter 2 Electrical Connection	16
2.1 WIRING DIAGRAM:	16
2.2 25-PIN PORT I/O SIGNAL DEFINITION:	16
2.3 SIGNAL DEFINITION OF J2 INTERFACE	
2.4 SIGNAL DEFINITION OF J3 INTERFACE	22
2.5 J4 SINGAL DEFINITION, RESERVED, NO SPECIFIC FUNCTION	24
2.6 J5 SINGAL DEFINITION	
2.7 CONNECTING PULSE/DIRECTION OUTPUT SIGNAL:	
2.8 CONNECTING ENCODER INPUT SIGNAL:	
2.9 CONNECTING DIGITAL INPUT:	
2.10 CONNECTING DIGITAL OUTPUT:	
Chapter 3 Software Installation	32
3.1 INSTALLING DRIVERS ON WIN98:	
3.2 INSTALLING DRIVERS ON WINXP:	
3.3 INSTALLING DRIVERS ON WIN7	37
Chapter 4 Electrical Specifications	
4.1 SWITCH INPUT:	42
4.2 Count input:	
4.3 PULSE OUTPUT:	43
http://www.adtechcn.co	com 4

/IDTECH众为兴

4.4 SWITCHING OUTPUT:	43
4.5 POWER OUTPUT:	43
Chapter 5 Common Servo Wiring Diagrams	43
5.1 PANASONIC A5 SERVO WIRING DIAGRAM:	43
Chapter 6 Working Environment	
6.1 OPERATING TEMPERATURE:	
6.2 STORAGE TEMPERATURE:	
6.3 OPERATING HUMIDITY:	
6.4 STORAGE HUMIDITY:	
Software Programming	
Chapter 1 Function Description	
1.1 Pulse output mode:	
1.2 HARDWARE LIMIT SIGNAL:	
1.3 QUANTITATIVE DRIVING:	
1.4 CONTINUOUS DRIVING:	
1.5 Speed curve:	49
1.6 POSITION LATCH:	52
1.7 EXTERNAL SIGNAL DRIVING:	53
1.8 LARGE CACHE SMALL SEGMENT:	
1.9 SPEED ADAPTIVE MODEL:	
1.10 Spherical arc interpolation:	
1.11 VARIOUS ACCELERATION AND DECELERATION MODES:	
1.12 NURBS INTERPOLATION:	
1.13 SIMULTANEOUS CONTROL OF MULTIPLE PROCESSES:	55
1.14 GANTRY DUAL-DRIVE, CHANGING DRIVE SPEED AND TARGET	50
POSITION IN MOTION: 1.15 Specify the time for four-axis linear interpolation:	
1.15 SPECIFY THE TIME FOR FOUR-AXIS LINEAR INTERPOLATION 1.16 PULSE GENERATOR:	
1.17 GET ARC LENGTH, SET 15 FILTER LEVELS FOR INPUT POINT:	
Chapter 2 Motion Control Library Function Guide	
2.1 Introduction of ADT-8949 function library	
2.2 Calling DLL on Windows	
2.2 CALLING DLL ON WINDOWS	
2.4 CALLING IN VB	
2.5 CALLING IN VB	
2.6 RETURN VALUE AND MEANING OF LIBRARY FUNCTION	
Chapter 3 Key Points for Motion Control Development	
http://www.adtechcn.com	5

/IDTECH众为兴

3.1 Card initialization60
3.2 Speed setting
Chapter 4 System Security Mechanism62
4.1 Monitoring error message:
4.2 LIMIT:
Chapter 5 High Speed Capture of External Signal Homing63
5.1 Homing motion:
Chapter 6 Linkage Control
6.1 SINGLE AXIS QUANTITATIVE UNIFORM MOTION:
6.2 SINGLE AXIS QUANTITATIVE SYMMETRY TRAPEZOIDAL
ACCELERATION / DECELERATION MOTION:
6.3 SINGLE AXIS QUANTITATIVE ASYMMETRY TRAPEZOIDAL
ACCELERATION / DECELERATION MOTION:
6.4 SINGLE AXIS QUANTITATIVE S-CURVE ACCELERATION /
DECELERATION MOTION:
6.5 Single axis quantitative exponential acceleration /
DECELERATION MOTION:
6.6 SINGLE AXIS QUANTITATIVE TRIGONOMETRIC ACCELERATION AND
DECELERATION MODE MOTION:
6.7 MULTI-AXIS MOTION
Chapter 7 Interpolation Motion Control83
7.1 TWO-AXIS LINEAR INTERPOLATION (CONSTANT SPEED)83
7.2 Two-axis linear interpolation (acceleration / deceleration)
86
7.3 2D ARC INTERPOLATION (ACCELERATION/DECELERATION)
7.4 3D ARC INTERPOLATION (ACCELERATION/DECELERATION)92
Chapter 8 Track Motion Control94
8.1 CACHE INTERPOLATION95
Chapter 9 Universal Digital I/O
9.1 INPUT PORT DEFINITION: SEE HARDWARE CHAPTER 2 ELECTRICAL
CONNECTION FOR SPECIFIC DEFINITION
9.2 OUTPUT PORT DEFINITION: SEE HARDWARE CHAPTER 2
ELECTRICAL CONNECTION FOR SPECIFIC DEFINITION
9.3 OUTPUT PORT:
9.4 INPUT PORT:
Chapter 10 Auxiliary Control101

/IDTECH众为兴

11.1 POSITION LOCKING:	101
Chapter 11 List of ADT8949 Basic Library Functions	103
Chapter 12 Detailed Description of ADT8949 Basic Li	ibrary
Functions	
12.1 BASIC PARAMETER SETTING	
12.2 RESET MOTION CARD	
12.3 DRIVING STATUS CHECKING	
12.4 MOTION PARAMETER SETTING	
12.5 PARAMETER CHECKING	
12.6 DRIVING	136
12.7 SWITCH QUANTITY	
12.8 FIFO OPERATION OUTPUT	
12.9 HANDWHEEL FUNCTION	150
12.10 DA OUTPUT	151
13.11 HOMING MODULE	151
Chapter 13 Troubleshooting	154
13.1 MOTION CONTROL CARD DETECTIONS FAILS	
13.2 MOTOR RUNNING ABNORMAL	155
13.3 SWITCH INPUT ABNORMAL	157
13.3 SWITCH OUTPUT ABNORMAL	
13.4 Encoder abnormal	159

Overview

Chapter 1 Product Introduction

1.1 Description:

ADT-8949 multi-axis motion control card is one of the high-performance four-axis motion control cards of Adtech based on PCI bus. One system supports up to 10 control cards and controls 40 channels of servo / stepper motor. It features T-shaped, S-shaped and E-shaped acceleration and deceleration, point and track motion planning, electronic gear, electronic card synchronized motion planning, linear interpolation, arc interpolation planning, splines, follow and other functions. It is especially suitable for occasions that have high-speed and high-precision position control requirement, and is widely used in testing, semiconductor packaging, mechanical arm, dispensing, packaging, engraving, and PCB processing.

1.2 Hardware specifications:

- ➢ 32-bit PCI bus, plug and play.
- > Controllable axes: Four-axis pulse control.
- > Maximum pulse output frequency 5MHz.
- Four-axis encoder feedback, frequency up to 4MHz, A/B phase difference pulse input and upper/lower pulse input are available, 32-bit count, 4 ratios.
- Support hardware serial number, allow third-party encryption.
- DSP + FPGA chip dedicated motion technology, provide high-speed and high-performance track smoothing and speed optimization.
- Pulse output types: Pulse + direction (PUL+DIR) or double pulse (CW + CCW).
- > 36 channels digital inputs, all optically isolated.
- ➢ 32 channels open collector output.
- ➢ 2 channels DA output.

1.3 Control functions:

- Hardware cache: large capacity multi-axis hardware interpolation cache, store up to 10,000 interpolation instructions, continuous small line segments and large cache, used for multi-segment continuous track applications, such as engraving machine or cutting machine, so that the discrete data of CAM can be restored to the processing model.
- Speed preview: small line segment pretreatment, speed adaptive model, ensure high speed under high precision, automatic speed optimization, used for milling machine, tooling and other applications requiring high precision control, making the machine run smoothly from speed planning, and track error can be controlled.
- Multi-axis linkage: each axis moves or stops independently in accordance with the set speed and target position, and the driving speed can be changed in real time.
- Any 2-4 axis linear interpolation, 1-4 axis hardware cache interpolation, 2-3 axis hardware arc interpolation.
- 3D arc interpolation (spherical interpolation): achieve arc in any spatial plane and spherical arc. 3D hardware-level arc interpolation, support for hardware buffer interpolation, only occupies four data segments, and arc approximation accuracy is determined by interpolation speed dynamically to avoid discrete error of small segment approximation and contradictions of difficult speed tradeoff.
- Various acceleration and deceleration modes: T-shaped, S-shaped, E-exponential and C-cosine, support asymmetric acceleration and deceleration, smooth running, quiet motor
- NURBS interpolation: Compared to the traditional linear interpolation and arc interpolation, achieve curve and surface track;

ADTECH (ADT-8949 4-axis Motion Control Card

NURBS interpolation can express various curve and surface tracks more accurately to improve curve and surface control accuracy.

- Synchronous dual drive: Two-axis pulse strict synchronization for dual-drive control in gantry structure.
- Position locking: In locking mode, when the locking signal is triggered, the hardware locks the logic location and actual position of the rising edge and falling edge, and can be used for quick homing, position measurement and other applications.
- Hardware cache IO event: In hardware cache function, not only the motion instructions but also IO output action and pulse generator can be cached. After the set axis of pulse generator reaches the specified location, the specified output port flips the level, and the flip times and frequency can be set. IO output cache can easily achieve precise position comparison output.
- Signal filtering: 15 filter levels can be set for input point to increase the anti-jamming capability of input signal
- Simultaneous control of multiple processes: You can open two programs to control one card. (A single monitoring program run simultaneously with the execution program; the execution program doesn't need to switch a lot of time for display, which makes the display more real-time.
- Various homing modes: Before precise motion, it is necessary to set the home of mechanical coordinates, usually perform mechanical homing; the action is to reset. The system provides a variety of homing modes to facilitate efficient homing.
- Hardware upgrade: Upgrade dynamic library to complete hardware upgrade, which facilitate hardware system upgrade and client features customization.

1.4 Software support:

Operating system: DOS, WINDOWS95/98/NT/2000/XP, WINCE, WIN7

Programming environment: C/BC++/VC/VB/C#/C++Builder/ Delphi/ LabVIEW/ EVC

Application examples of open-DOS and Windows

1.5 Applications:

- Machine vision, automatic test equipment, AOI;
- Biological, medical automatic sampling equipment;
- > Cutting equipment: diamond cutter, sponge cutting machine;
- Dispensing industry;
- Semiconductor packaging industry: Bonder;
- Advertising industry: CNC bending machine;
- Packaging and printing equipment: printing machine, pad printer;
- Engraving equipment;
- Industrial robot equipment;
- > PCB processing, SMT and other industries;

1.6 ADT-8949 series features list:

 $\sqrt{\text{Yes}}$, - No, * optional

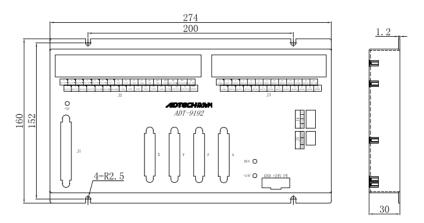
		ADT-8949A1	ADT-8949B1	ADT-8949G1
No.	Function Name	(Universal)	(Track)	(Enhanced)
1	Pulse output mode: Pulse + direction, pulse + pulse	\checkmark	\checkmark	V
2	4 channels incremental encoder input	\checkmark	\checkmark	\checkmark
3	2 channels DA (-10V~+10V)	\checkmark	\checkmark	\checkmark
4	36 channels digital signal input	\checkmark	\checkmark	\checkmark
5	32 channels digital signal output	\checkmark	\checkmark	\checkmark
6	Home signal input		\checkmark	
7	Limit signal input		\checkmark	
8	Hardware emergency stop input	\checkmark	\checkmark	\checkmark
9	Drive alarm signal input		\checkmark	
10	Drive enable signal output			
11	Driving reset signal output		\checkmark	

12	Multi-axis linkage (point motion)	\checkmark	\checkmark	\checkmark
13	2-4 axis linear interpolation		\checkmark	\checkmark
14	2-axis hardware arc interpolation	\checkmark	\checkmark	\checkmark
15	3-axis hardware arc interpolation	-	\checkmark	\checkmark
16	1-4 axis hardware cache interpolation	\checkmark	\checkmark	\checkmark
17	Hardware cache IO event			\checkmark
18	Speed preview	-	\checkmark	
19	Various acceleration and deceleration modes (T, S, E, C)	V	\checkmark	V
20	Asymmetric acceleration and deceleration	-	\checkmark	V
21	Online changing of drive speed	V	V	V

22	Position locking		\checkmark	\checkmark
23	Various	N	N	2
23	homing mode	v	v	v
24	Signal filtering	\checkmark	\checkmark	\checkmark
	Multiple			
25	processes		N	2
23	simultaneously	v	v	, , , , , , , , , , , , , , , , , , ,
	control			
26	NURBS			2
20	interpolation	-	-	v
	Synchronous			
27	dual-drive	-	-	\checkmark
	(semi-closed)			
28	Hardware			2
20	upgrade	-	-	v

Hardware Chapter 1 Hardware Installation

1.1 Packing list:


No.	Name	Description		
1	User's	Instructions	1	
	Manual			
2	User CD	SDK, examples and other information	1	

		package	
3	ADT-8949	Four-axis motion card	1
4	ADT-9192	Terminal box	1
5	ADT-D62GG	Data cable	1

1.2 Installation size:

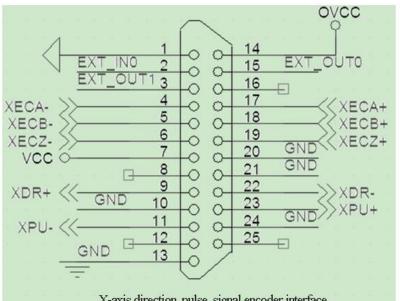
The appearance and installation dimensions of ADT-9192 are as follows:

1.3 Installation steps:

- 1. Turn off the PC (Note: Turn off the master switch for ATX power supply)
- 2. Open the rear cover of PC case
- 3. Select an unoccupied PCI slot, and insert ADT-8949.
- 4. Ensure that the gold finger of ADT-8949 is completely inserted into the PCI slot, and tighten the screws.
- 5. Connect one end of the D62GG cable to J4 interface of the control card and connect the other end to J1 of ADT-9192

board.

Chapter 2 Electrical Connection


2.1 Wiring diagram:

	PCI		M.		
Z				ſ	
ſ	.		485 com	munication	
l	<u> </u>	:_ [:]			IO expansion module
		Terminal bo	ard		
- Háy					

2.2 25-pin port I/O signal definition:

Four DB terminals correspond to four axes (XYZA). Below is the example of X axis. Other axes are similar.

X-axis direction, pulse, signal encoder interface

No.	Signal	Definition
	name	
1	\bigtriangledown	External 24V power grounding
2	EXT_IN0	External input, low level active, does not
		support two-wire sensor connection.
3	EXT_OUT1	Output control signal, opto-isolated output, low
		voltage level active
4	XECA-	X-axis encoder A phase input negative, can be
		used as an general input point, corresponding to
		sample program input point IN36, Y-axis, Z-axis
		and A-axis correspond to IN37, IN38, and IN39
		respectively. When used as general input point,
		refer to 3.9 digital input connection - encoder
		signal as general input for wiring.

5	XECB-	X-axis encoder B phase input negative, can be		
		used as an general input point, corresponding to		
		sample program input point IN40 , Y-axis, Z-axis		
		and A-axis correspond to IN41, IN42, and IN43		
		respectively. When used as general input point,		
		refer to 3.9 digital input connection - encoder		
		signal as general input for wiring.		
6	XECZ-	X-axis encoder Z phase input negative, can be		
		used as an general input point, X-axis		
		corresponds to XSTOP1 (IN44), Y-axis		
		corresponds to YSTOP1 (IN45), Z-axis		
		corresponds to ZSTOP1 (IN46) and A-axis		
		corresponds to ASTOP1 (IN47). When used as		
		general input point, refer to 3.9 digital input		
		connection - encoder signal as general input		
		for wiring.		
7	VCC	+5V power output (can't be connected to external		
		power supply)		
8	NC			
9	XDR+	X axis direction positive signal		
10	GND	5V power grounding		
11	XPU-	X axis pulse negative signal		
12	NC			
13	GND	5V power grounding		
14	OVCC	+24V power output (can't be connected to		
		external 24V+)		
15	EXT_OUT0	Output control signal, opto-isolated output, low		
		voltage level active		
16	NC			
17	XECA+	X axis encoder phase A input positive		

ADTECH 众为兴

ADT-8949 4-axis Motion Control Card

18	XECB+	X axis encoder phase B input positive
19	XECZ+	X axis encoder phase Z input positive
20	GND	5V power grounding
21	GND	5V power grounding
22	XDR-	X axis direction negative signal
23	XPU+	X axis pulse positive signal
24	GND	5V power grounding
25	NC	

2.3 Signal definition of J2 interface

	J	2	
IN4/XLT+		2	IN5/XLT-
IN6/YLT+	1	$\begin{array}{c}2\\4\end{array}$	IN7/YLT-
IN8/ZLT+	3		IN9/ZLT-
IN10/ALT+	5	6	IN11/ALT-
IN12/XHM	7	8	IN13/YHM
IN14/ZHM	9	10	IN15/AHM
IN16/EMGN	11	12	IN17
IN18	13	14	
IN20	15	16	IN21
IN20	17	18	IN23
	19	20	
IN24	21	22 -	IN25
IN26	23	24	IN27
IN28	25	26	IN29
IN30	27	28	IN31
IN32/EXTX+	29	30	IN33/EXTX-
IN34/EXTY+	31	32	IN35/EXTY-
+24V GND	33	34	+24V_VCC

34-bit double dislocation terminal wiring is defined as below

1	IN4/XLT+	X positive limit signal, can be used as
		general input

2	IN5/XLT-	X negative limit signal, can be used
		as general input
3	IN6/YLT+	Y positive limit signal, can be used as
		general input
4	IN7/YLT-	Y negative limit signal, can be used
		as general input
5	IN8/ZLT+	Z positive limit signal, can be used as
		general input
6	IN9/ZLT-	Z negative limit signal, can be used as
		general input
7	IN10/ALT+	A positive limit signal, can be used as
		general input
8	IN11/ALT-	A negative limit signal, can be used
		as general input
9	IN12/XHM	X home signal (STOP0), can be used
		as general input
10	IN13/YHM	Y home signal (STOP0), can be used
		as general input
11	IN14/ZHM	Z home signal (STOP0), can be used
		as general input
12	IN15/AHM	A home signal (STOP0), can be used
		as general input
13	IN16/EMGN	Emergency stop signal, can be used as
		general input
14	IN17	General input
15	IN18	General input
16	IN19	General input
17	IN20	General input
18	IN21	General input
19	IN22	General input

20	IN23	General input	
21	IN24	General input	
22	IN25	General input	
23	IN26	General input	
24	IN27	General input	
25	IN28	General input	
26	IN29	General input	
27	IN30	General input	
28	IN31	General input	
29	IN32/EXTX+	X manual forward rotation signal, can	
		be used as general input	
30	IN33/EXTX- X manual reverse rotation signal, can		
		be used as general input	
31	IN34/EXTY+	Y manual forward rotation signal, can	
		be used as general input	
32	IN35/EXTY-	Y manual reverse rotation signal, can	
		be used as general input	
33	EXT_+24V GND	24V power grounding	
34	EXT_+24V VCC	+24V power output (can't be	
		connected to external 24V+)	

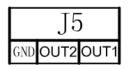
2.4 Signal definition of J3 interface

	J3	20	
EXT_OUT8	1	2	EXT_OUT9
EXT_OUT10	3	4	EXT_OUT11
EXT_OUT12	5	6	EXT_OUT13
EXT_OUT14	7	8	EXT_OUT15
EXT_OUT16	9	10	EXT_OUT17
EXT_OUT18	11	10	EXT_OUT19
EXT_OUT20	13	$12 \\ 14 -$	EXT_OUT21
EXT_OUT22		122015 I	EXT_OUT23
EXT_OUT24	15	16	EXT_OUT25
EXT_OUT26	17	18 -	EXT_OUT27
EXT_OUT28	19	20	EXT_OUT29
EXT_OUT30	21	22	EXT_OUT31
+24V GND	23	24	+24V VCC
<	25	26 -	0

26-bit double dislocation terminal wiring is defined as below

Wire	Name	Function
No.		
1	EXT_OUT8	Output control signal, opto-isolated output, low
		voltage level active
2	EXT_OUT9	Output control signal, opto-isolated output, low
		voltage level active
3	EXT_OUT10	Output control signal, opto-isolated output, low
		voltage level active
4	EXT_OUT11	Output control signal, opto-isolated output, low
		voltage level active
5	EXT_OUT12	Output control signal, opto-isolated output, low
		voltage level active
6	EXT_OUT13	Output control signal, opto-isolated output, low

		voltage level active
7	EXT_OUT14	Output control signal, opto-isolated output, low
		voltage level active
8	EXT_OUT15	Output control signal, opto-isolated output, low
		voltage level active
9	EXT_OUT16	Output control signal, opto-isolated output, low
		voltage level active
10	EXT_OUT17	Output control signal, opto-isolated output, low
		voltage level active
11	EXT_OUT18	Output control signal, opto-isolated output, low
		voltage level active
12	EXT_OUT19	Output control signal, opto-isolated output, low
		voltage level active
13	EXT_OUT20	Output control signal, opto-isolated output, low
		voltage level active
14	EXT_OUT21	Output control signal, opto-isolated output, low
		voltage level active
15	EXT_OUT22	Output control signal, opto-isolated output, low
		voltage level active
16	EXT_OUT23	Output control signal, opto-isolated output, low
		voltage level active
17	EXT_OUT24	Output control signal, opto-isolated output, low
		voltage level active
18	EXT_OUT25	Output control signal, opto-isolated output, low
		voltage level active
19	EXT_OUT26	Output control signal, opto-isolated output, low
		voltage level active
20	EXT_OUT27	Output control signal, opto-isolated output, low
		voltage level active
21	EXT_OUT28	Output control signal, opto-isolated output, low

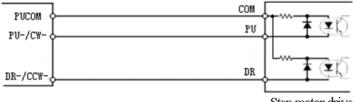


		voltage level active
22	EXT_OUT29	Output control signal, opto-isolated output, low
		voltage level active
23	EXT_OUT30	Output control signal, opto-isolated output, low
		voltage level active
24	EXT_OUT31	Output control signal, opto-isolated output, low
		voltage level active
25	EXT_+24V	24V power grounding
	GND	
26	EXT_+24V	+24V power output (can't be connected to
	VCC	external 24V+)

2.5 J4 signal definition, reserved, no specific function

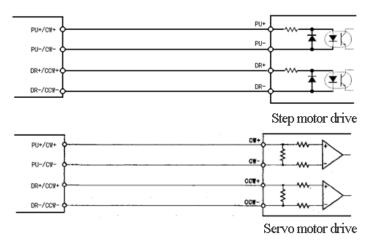
J4			
GND	+5V	А	В

2.6 J5 signal definition


Wire No.	Name	Function
1	OUT1	DA1 output, 0~10V output
2	OUT2	DA2 output, 0~10V output
3	GND	Reference grounding

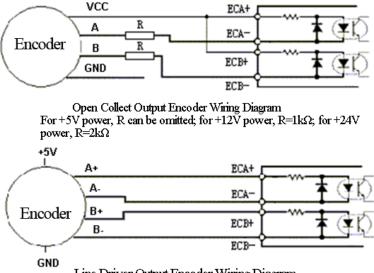
2.7 Connecting pulse/direction output signal:

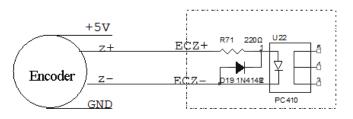
Pulse output is differential output

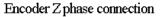

Can be easily connected to the stepper / servo drives

Below is the connection that pulse anode and direction anode have been connected.

Step motor drive

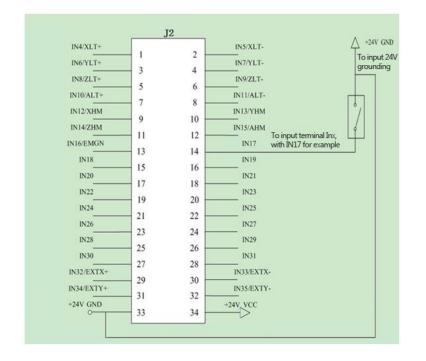

Below is independent connection of pulse and direction signal. Differential connection is recommended due to strong anti-interference.

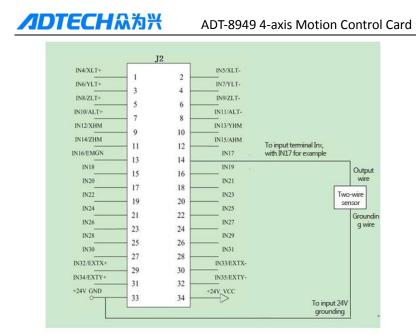

Note: Refer to Appendix A for the wiring diagram of step motor drive, common servo motor drive and terminal board.


2.8 Connecting encoder input signal:

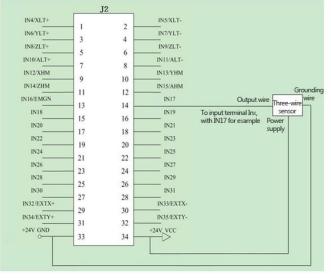
/IDTECH众为兴

Line Driver Output Encoder Wiring Diagram

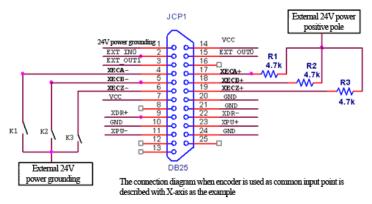



2.9 Connecting digital input:

The following figure shows the mechanical switch connection with IN17 for example (regardless of switch polarity):



The following figure shows the two-wire sensor connection (note the polarity of two-wire sensor; blue is ground wire, and brown is output wire). Note: The input points IN0~IN3 of four-axis 25-pin DB connector do not support two-wire sensor connection.



Below is three-wire sensor connection (pay attention to the polarity of three-wire sensor; refer to corresponding manual):

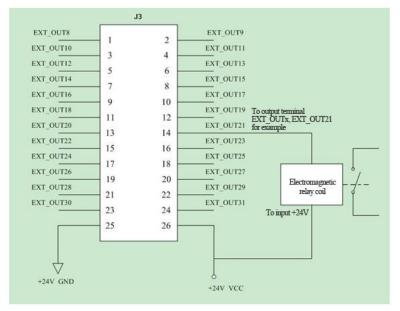
The connection diagram of encoder AB phase signal as normal input point (K1, K2, K3 in mechanical switch connection):

Note: After ADT-9192 is connected to the power, the power of wiring terminal J2 is synchronized to 24V, XECA+, XECB+ and XECC+ are 4.7K resistance respectively, and then connect to the positive pole of the 24V power supply of J2 terminal, XECA-, XECB- and XECC-correspond the corresponding input point. Other axes are similar.

The relationship between encoder as common input point and sample program input point

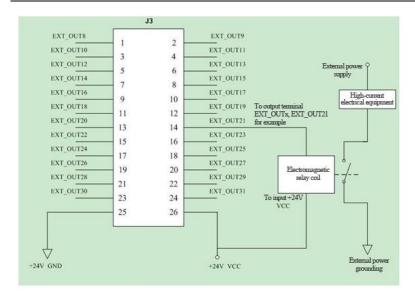
XECA- corresponds to IN36, XECB- corresponds to IN40, and XECZcorresponds to IN44

YECA- corresponds to IN37, XECB- corresponds to IN41, and XECZcorresponds to IN45

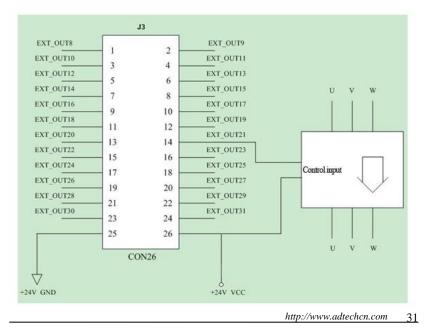

ZECA- corresponds to IN38, XECB- corresponds to IN42, and XECZ- corresponds to IN46

AECA- corresponds to IN39, XECB- corresponds to IN43, and XECZcorresponds to IN47

2.10 Connecting digital output:


All common output points of the board are open drain output, and the drive current at each point is within 1A. Before use, consider if the drive current of the output point is adequate; if not, expand with external relay and connect freewheeling protection diode.

Below is the connection of output point driven general electromagnetic relay (regardless of relay coil polarity unless otherwise specified):



The connection of electromagnetic relay expansion flow output point (only normally open relay can be used for expansion flow)

Solid state relay connection (pay attention to the polarity of solid state relay control terminal):

The figure shows the connection of three-phase solid state relay. Two-phase and single-phase solid state relays have the similar connection.

Chapter 3 Software Installation

To use ADT-8949 card properly on Win95 / Win98 / NT / Win2000 / WinXP, you need to install the drivers. No drivers are needed in DOS. Below is the example on Win2000 and WinXP. Refer to this section for other systems.

The drivers of the control card are located on the CD "Development kits \ Drivers \ Control Card Drivers", and the file name is 8949.INF.

3.1 Installing drivers on Win98:

Below is an example of driver installation on Win98 Professional Chinese version. Other versions are similar to Win98.

After installing the ADT-8949 card into a PCI slot on the computer, log in as administrator, and the computer should find the new hardware and pop up the following screen:

Click "Next" to pop up the following screen

Add New Hardware Wizard	
	Windows will search for new drivers in its driver database on your driver, and in any of the following selected locations. Click Next to start the search. Search floppy disk drives search CD-HOM driver Microsoft Windows Update
	Specify a location: E:PCI Drivers\ADT8949G1 Motion Card Drivers
*	Browse
	< Back Next > Cancel

Click the "Browse" button, select CD "Development Kits $\ Drivers \ Motion Card Driver" and find the file 8949.inf, and click "OK" to pop up the following interface$

ADT853 Motion Card Drivers
ADT854 Motion Card Drivers
ADT856 Motion Card Drivers ADT8640USB Drivers
ADT8933 Motion Card Drivers
ADT8949G1 Motion Card Drivers
ADT8940F Motion Card Drivers
ADT8940 Motion Card Drivers
ADT8946 Motion Card Drivers
ADT8948 Motion Card Drivers
ADT8960 Motion Card Drivers
Recycled

Click "OK" to pop up the following screen:

Click "Next" to pop up the following screen

Click "Next" to pop up the following screen

Add New Hardware Wiz	zard
	ADT8949G1 Motion Card Windows has finished installing the software that your new hardware device requires.
	K Back Finish Cancel

Click "Finish" to finish the installation of ADT-8949 card

3.2 Installing drivers on WinXP:

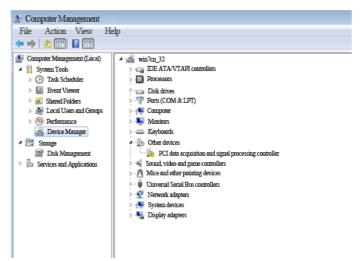
Below is the example of installing drivers on WinXP. Other systems are similar.

Select in above figure to pop up the following screen

Select in above figure and click Next to pop up the following screen

Found New Hardware Wizard
Please choose your search and installation options.
 Search for the best driver in these locations: Use the check boxes below to limit or expand the default search, which includes local paths and removable media. The best driver found will be installed Search removable media (floppy, CD-ROM) Include this location in the search: E-PCI Drivers \ADT8949G1 Control Card Drivers
Don't search. I will choose the driver to install. Choose this option to select the device driver from a list. Windows does not guarantee that the driver you choose will be the best match for your hardware.
Back Next Cancel

Click "Browse", select CD "Development Kits\Drivers\Motion Card Drivers" to locate the file 8949.INF, and click Next to pop up the following screen



Click "Finish" to finish the installation of ADT-8949 card

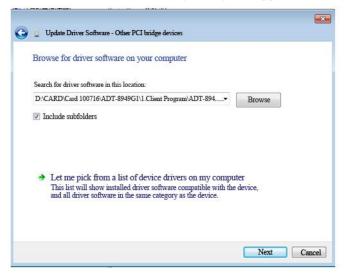
3.3 Installing drivers on Win7

Install the drivers on Win7 system as follows:

1. Insert the control card into PCI slot, right click "My Computer" and select "Properties" to enter Device Manager, as shown below:

Expand "Other devices", select "PCI data acquisition and signal processing controller", and right click, as shown below:

/IDTECH众为兴

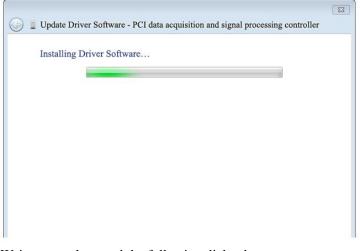

2. In the popup dialog box, click "Update Driver Software" to show the following dialog box:

(Update Driver Software-	PCI data acquisiton and signal processing controller	
How do you want to search	a for driver software?	
Windows will search your o	for updated driver software omputer and the Internet for the latest driver software for fisabled this feature in your device installation settings.	
 Browse my computer Locate and install driver sof 		
		Cancel

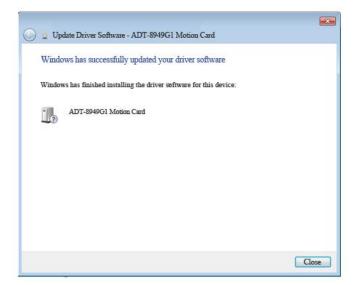
Select the option "Browse my computer for driver software", and then click the "Browse" button to specify the path for the driver, as shown below:

	22
🚱 👔 Update Driver Software - Other PCI bridge devices	
Browse for driver software on your computer Search for driver software in this location: D:\Winlo Update\WIN732-bit Development Kits Summary 20 •	Brousa
D. WILLO Optate WILV 52-bit Development Kits Stittmary 20*	
Include subfolders	Browse For Folder Select the folder that contains drivers for your hardware.
Browse for driver software on your computer This list will show installed driver software compatible with th software in the same category as the device.	Select the folder that contains drivers for Solution Instructions Control Card Drivers Folder: 1.Control Card
	OK Cancel

3. Click "OK", and the following dialog box appears:



4. Click "Next" to install the drivers, and the following interface appears:



5. Select "Install this driver software", and the following interface appears

Wait to complete, and the following dialog box appears

The ADT-8949 card is installed. Note: WIN7 system requires administrator privileges to load the PCI drivers. If the control card application is run for the first time, double-clicking will lead to the control card initialization failed. Therefore, when the drivers are installed, right click the control card application (e.g. VC demonstration program "DEMO.EXE") and select "Run as Administrator" (see below). You can double-click the application to run it normally later.

ADT-8949 4-axis Motion Control Card

DEMO.dsp		2008/10/8 10:03	VC++ 6 Project	5 KB
DEMO.dsw		2007/5/14 9:05	Project Workspa	1 KB
DEMO.exe		2008/12/23 17:17	application program	248 KB
DEMO.h	Open		++ Header	2 KB
🗎 DEMO.ncb 😗	Run as administrate	or	++ Intellisens	953 KB
Demo.opt	Add to archive		T File	83 KB
🖉 DEMO.plg 🛛 🕃	Add to archive		ML Document	3 KB
DEMO.rc 🗎	Add to "DEMO.ra	r"	source Script	40 KB
🐏 DEMODIg.cpr	Compress and en	nail	+ Source	66 KB
h DEMODIg.h		MO.rar" and email	++ Header	4 KB
🚰 IOTest.cpp	Pin to Taskbar		+ Source	5 KB
h IOTest.h	Pin to Start Menu Restore previous versions		++ Header	2 KB
ReadMe.txt	Restore previous vo	ersions	Document	4 KB
h Resource.h	Send to		+++ Header	15 KB
StdAfx.cpp	G .		+ Source	1 KB
b StdAfx.h	Cut		++ Header	2 KB
date: 2008/12/23 :	Сору			
ytes: 248 KB	Create shortcut			
	Delete			
	Rename			
	Properties			

Chapter 4 Electrical Specifications

4.1 Switch input:

Channel: 36 channels, all optically isolated. Input voltage: 12-24V High voltage level > 4.5V Low voltage level <1.0V Isolation voltage: 2500V DC

4.2 Count input:

Channel: 4 channels AB phase encoder input, all optically isolated. Maximum count frequency: 4MHz Input voltage: 5-24V

High voltage level >4.5V Low voltage level <1.0V Isolation voltage: 2500V DC

4.3 Pulse output:

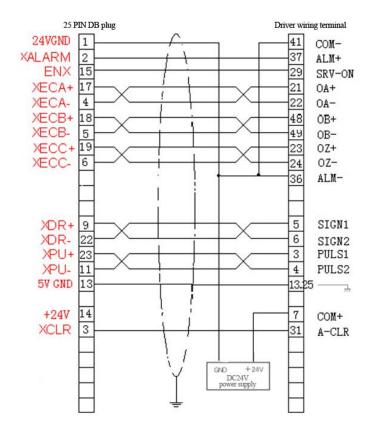
Channel: 4 pulses, four directions, all optically isolated. Maximum pulse frequency: 5MHz

Output type: 5V differential output

Output: Pulse + direction or pulse + pulse

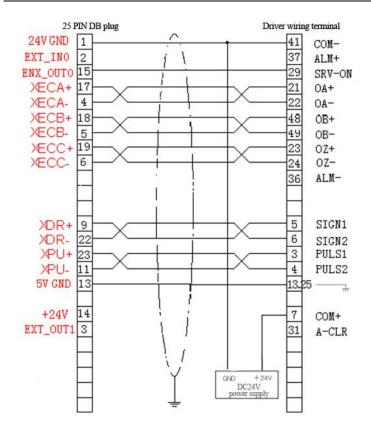
4.4 Switching output:

Output channels: 32 channels, all optically isolated. Output type: NPN open collector 5-24VDC, maximum current of single output of common output port: 1A; maximum current of single output of DB terminal: 50mA.


4.5 Power output:

Output voltage: + 5V. Output type: DC source, maximum current 500mA.

Chapter 5 Common Servo Wiring Diagrams


5.1 Panasonic A5 servo wiring diagram:

Below is the wiring of motion card connected to Panasonic A5 servo drive: use external power supply, external enable, including alarm signal.

Below is the wiring of motion card connected to Panasonic A5 servo drive: use external power supply, external enable, alarm information not specified.

Chapter 6 Working Environment

6.1 Operating temperature:

Operating temperature: 0°C~60°C

6.2 Storage temperature:

Storage temperature: -20°C~80°C

6.3 Operating humidity:

Operating humidity: 20%~95%

6.4 Storage humidity:

Storage humidity: 0%~95%

Software Programming

Chapter 1 Function Description

1.1 Pulse output mode:

Driving output pulse has the following two pulse output modes below. When independent two pulses mode is used in positive driving, PU/CW outputs driving pulse; in negative driving, DR/CCW outputs driving pulse; when one pulse mode is used, PU/CW outputs driving pulse and DR/CCW outputs direction signal.

(2011) (1 1) 2		Output signal wave	
Pulse output mode	Driving direction	PU/CW signal	DR/CCW signal
Independent two pulses mode	+ direction driving output		Low level
independent two pulses mode	- direction driving output	Low level	
One pulse mode	+ direction driving output		Low level
	- direction driving output		High level

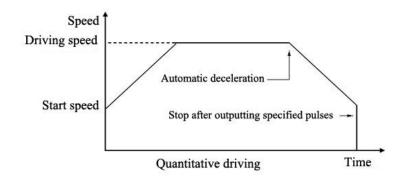
Both pulse and direction are positive logic setting

1.2 Hardware limit signal:

Hardware limit signal (LMT+, LMT-) is the input signal that limits positive and negative driving pulse. It can be set to valid, invalid,

ADTECH 称为兴

high level or low level, and the positive and negative limits can be set be valid / invalid independently. When set to invalid, it can be used as normal input point.


Hardware limit signal (STOP0, STOP1) can achieve input signal to stop driving of each axis. It can be set to valid, invalid, high level or low level. When set to invalid, it can be used as normal input point. In addition, STOP0 and STOP1 signals are only valid for the minimum interpolation axis in interpolation driving.

1.3 Quantitative driving:

Quantitative driving is to output specified quantity of pulse in constant speed or acceleration/deceleration. Use this function to move to specified position or perform specific action. Quantitative driving of acceleration/deceleration is shown below. When the remaining of output pulse is less than acceleration accumulated pulses, it starts accelerating, and the driving also stops after outputting specified pulses.

The following parameters should be set for the quantitative driving for acceleration/ deceleration:

- a) Range R
- b) Acceleration/deceleration A/D
- c) Start speed SV
- d) Driving speed V
- e) Output pulses P

Acceleration/deceleration quantitative driving usually starts automatic acceleration from the calculated deceleration point shown in the picture above; besides, manual deceleration is also possible. In the following cases, it is not possible to or can't calculate the automatic deceleration point, and thus manual calculation is required:

- Change speed frequently during linear acceleration/ deceleration quantitative driving
- Run arc interpolation and continuous interpolation in acceleration/deceleration

It is required to change to manual deceleration mode and set the deceleration point.

1.4 Continuous driving:

ECH众为兴

During continuous driving, output driving pulse continuously until high level stop command or external stop signal is valid. Use this function for home search, scanning operation and motor rotation control.

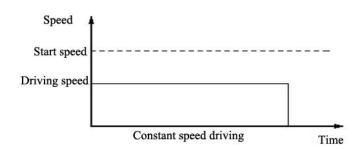
Two stop commands are available, one is deceleration stop and the other

ADTECH 众为兴

is immediate stop. Each axis has two external signals (STOPO, and STOP1) used for deceleration/ immediate stop. Each signal can set valid/invalid level. STOPO and STOP1 signals are deceleration stop in acceleration/deceleration driving and immediate stop in constant speed driving.

Home search action of continuous driving

Set home approach signal, home signal and encoder Z phase signal to STOPO and STOP1. Set the valid/invalid and logical level of every signal in every axis. During high speed search, use acceleration/deceleration continuous driving, and decelerate to stop when the set valid signal is in activated level. During low speed search, use constant speed continuous driving, and immediately stop when the set valid signal is in activated level. For acceleration/deceleration continuous driving, all the parameters except output pulses must be same as quantitative driving.


1.5 Speed curve:

1.5.1 Constant speed driving

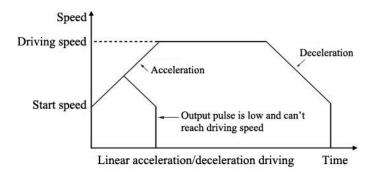
Constant speed driving will output driving pulse in constant speed. If the driving speed is lower than the start speed, there will be constant speed driving only instead of acceleration/deceleration driving. When use home search, encoder Z phase and similar signals,

acceleration/deceleration driving isn't required if stop immediately after signal is searched; instead, the system runs low speed constant driving. The following parameters should be set for constant speed driving:

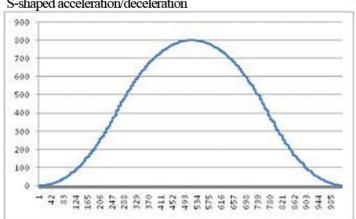
- Start speed SV
- Driving speed V

1.5.2 T-shaped linear acceleration/deceleration driving

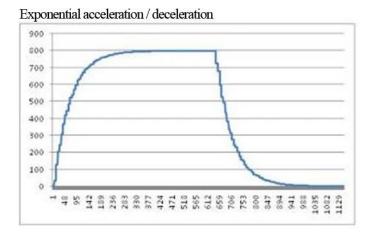
TECH众为兴


Linear acceleration/deceleration is to accelerate from the start speed to specified driving speed linearly.

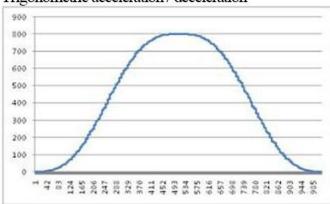
During quantitative driving, the acceleration counter records the accumulated pulses. When the remaining output pulses are less than acceleration pulse, it starts decelerating (automatic deceleration), and decelerates to start speed linearly in specified deceleration.


The following parameters should be set for linear acceleration/ deceleration driving:

- Acceleration A acceleration and deceleration
- Start speed SV
- Driving speed V



1.5.3 S-shaped curve acceleration/deceleration driving



S-shaped acceleration/deceleration

1.5.4 Exponential acceleration / deceleration driving

1.5.5 Trigonometric acceleration / deceleration driving

Trigonometric acceleration / deceleration

JDTECH众为兴

1.6 Position latch:

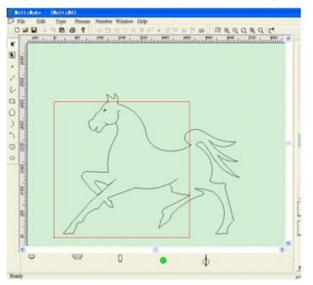
Use IN signal of each axis to achieve hardware position latch function. Use one latch signal to lock current position of all axes, and the locked position can be logic location or actual position.

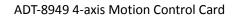
Position latch function has important applications in the measurement

system.

1.7 External signal driving:

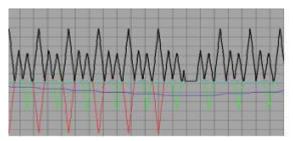
External signal driving is the movement controlled by external signal (hand wheel or switch), and is mainly used for manual debugging, particularly convenient in teaching system.

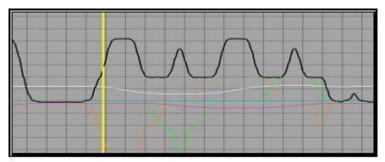

1.8 Large cache small segment:

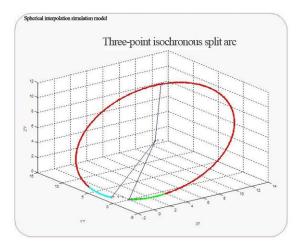

Large cache small segment: large capacity multi-axis cache interpolation, store 10K interpolation instructions; small segments and large cache are used for engraving or cutting applications to make discrete CAM data can be restored to processing model.

1.9 Speed adaptive model:

Speed adaptive model: to ensure precision under high speed, automatic speed optimization; used for milling machine, tooling and other applications requiring high precision control, makes the motor work in reasonable error range from speed planning.


For example, to run the following track, monitor the speed curve:




General speed curve:

Speed adaptive model curve:

1.10 Spherical arc interpolation:

ADTECH 众为兴

3D arc interpolation (spherical interpolation): achieve arc in any spatial plane and spherical arc, suitable for teaching operation of simplified complex graphics. Comprehensive 3D arc interpolation, hardware-level support, support cache interpolation, only occupies four data segments, arc approximation accuracy is determined by interpolation speed dynamically to avoid discrete error of small segment approximation and contradictions of difficult speed trade-off. - Helical interpolation and plane arc interpolation can be easily achieved based on spherical interpolation technology.

1.11 Various acceleration and deceleration modes:

Various acceleration and deceleration modes: T, S, E, C-type acceleration and deceleration, and support asymmetric acceleration and deceleration, smooth running, quiet motor.

1.12 NURBS interpolation:

General cards provide only linear and circular interpolation. For non-linear and arc curve, linear and arc piecewise fitting method is used for interpolation. This method may cause large data size, poor accuracy, uneven feed rate, complicated programming and other issues in processing complex curves, which will inevitably lead to a greater impact on the processing quality and costs. Spline is a method that enables direct interpolation of complicated free curves and surfaces.

1.13 Simultaneous control of multiple processes:

Simultaneous control of multiple processes: You can open two programs to control one card. (A single monitoring program run simultaneously with the execution program; the execution program doesn't need to switch a lot of time for display, which makes the display more real-time.)

1.14 Gantry dual-drive, changing drive speed and target position in motion:

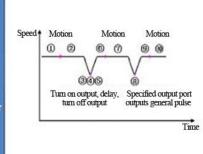
Gantry dual-drive, changing drive speed and target position in motion in real time

1.15 Specify the time for four-axis linear interpolation:

Specify the time for four-axis linear interpolation, facilitate speed planning customization

1.16 Pulse generator:

Insert up to 15-channel pulse generator function, specify the number of turns of the output level and holding time of high/low level, the accuracy is milliseconds, and can be used in dispensing, cutting, production line and other industries.


For example, in dispensing industry, the capacity of glue gun is fixed and it is required to feed the glue gun from time to time during motion. For conventional practice, the user calculates the glue amount and feed the glue gun by operating the output point on host computer. This approach is inaccurate, the operation is not flexible and result in untimely feeding easily.

The pulse generator function only needs to specify the glue position of the glue gun track and number of operations of glue feeding piston to achieve the glue feeding action easily. When the machine tool moves to the position specified by the user, the motion card will automatically activate the pulse generator to drive the piston, which can ensure easier operation and more accurate control.

fifo

() adt8949_inp_move4 (2) adt8949_inp_move4 (3) adt8949_set_fifo_IO (4) adt8949_set_fifo_IO (5) adt8949_set_fifo_IO (5) adt8949_inp_move4 (7) adt8949_inp_move4 (6) adt8949_set_fifo_pulser (6) adt8949_inp_move4 (6) adt8949_inp_move4 (6) adt8949_inp_move4

1.17 Get arc length, set 15 filter levels for input point:

Get the arc length, and set 15 filter levels for input point.

Chapter 2 Motion Control Library Function Guide

2.1 Introduction of ADT-8949 function library

ADT-8949 function library is the interface for users operating motion control card. The users can control the motion card to complete corresponding function by transferring interface functions.

The motion control card provides the motion function library in DOS and DLL in Windows. The transferring methods of function library in DOS and Windows are introduced respectively below.

2.2 Calling DLL on Windows

The DLL "adt8949.dll" in Windows is written with VC. It is in "Development Kit \Drivers\DLL" in the CD, and is suitable for the programming language tools in Window: VB, VC, C++Builder, VB.NET, VC.NET, Delphi and configuration software LabVIEW, etc.

2.3 Calling in VC

- (1) Create a new project;
- (2) Copy the files "adt8949.lib" and "adt8949.h" from "Development Kits \VC" in the CD to the path of the new project;
- (3) In the "File View" of the "Work Area" of the new project, right click the mouse and select "Add Files to Project", select "Library Files(.lib)" in the Add Files dialog box, search and select "adt8949.lib" and click "OK" to load the static library;
- (4) Add #include "adt8949.h" to the statement of source file or header file or global header filer "StdAfx.h";

After above four steps, the user can call the functions in the DLL.

Note: The calling in VC.NET is similar as VC.

2.4 Calling in VB

- (1) Create a new project;
- (2) Copy the file "adt8949lib.bas" from "Development Kits \VB" in the CD to the path of the new project;
- (3) Select "Project\Add module" menu, and select the "Save" tab in the dialog box, search the "adt8949lib.bas" module file, and click the Open button;

After above three steps, the user can call the functions in the DLL.

Note: The calling in VB.NET is similar as VB.

2.5 Calling in C++Builder

- (1) Create a new project;
- (2) Copy the files "adt8949.lib" and "adt8949.h" from "Development Kits \ C++Builder" in the CD to the path of the new project;
- (3) Select the "Project\Add to Project" menu, select "Library Files(.lib)" in the dialog box, search and select "adt8949.lib"

and click the "OK" button;

(4) Add #include "adt8949.h" to the statement of the program file;

After above four steps, the user can call the functions in the DLL.

2.6 Return value and meaning of library function

To ensure that the user can control the execution when using library function, every function in the library will return the result after execution. The user can check whether the function transfer is successfully according to the return value.

Except "int adt8949_initial(void)" and "int read_bit(int cardno, int number)" in the function library, other functions only return "0" and "1", where "0" indicates successful transfer and "1" indicates failed.

The meanings of the return values are described in the table below.

Function name	Return value	Meaning
	-1	Service is not installed
	-2	PCI bridge fault
	-3	DSP program download
	-3	error
		Hardware exception or
	-4	DLL version does not
adt8949_initial		match
	-5	Failed to create mutex
	-6	Failed to open mutex
	-7	Other causes
	0	Control card is not installed
	>0	Quantity of control cards
adtendo road hit	0	Low level
adt8949_read_bit	1	High level

	-1	Card number or input point
	1	overrun error
	0	Correct
All other functions	Non-0	Wrong

Note: Return 1 error is usually caused by false cardno (card number) or axis (axis number) during transferring library function. The value of card number must be 0, 1, 2 in sequence, and the Card number must be 0 if there is only one card; axis number must be 1, 2, 3, 4, and other values are false.

Chapter 3 Key Points for Motion Control Development

There will be some problems in the programming of the card. In fact, most of the problems are caused by misunderstanding the principal of the control card. Below is the description of some familiar instances that are easily understood.

3.1 Card initialization

3.1.1 Description

At the beginning of the program, call function adt8949_initial() first, check whether ADT8949 card is installed properly, and then set the pulse output mode and limit switch work mode. Above parameters should be set according to specific machine, and set only once when the program is initialized.

Note: library function "adt8949_initial" is the "door" to ADT8949 card. Calling other functions has meaning only after transferring this function and initializing the motion control card successfully.

3.1.2 Electronic gear ratio setting

ADTECH 称为兴

If the motor drive moves 1 mm for 10,000 pulses, the electronic gear ratio is set to 10000, that is, the gear parameter of adt8949_set_gear is set to 10000. Before executing linkage and interpolation motion instructions, the axis number parameter of adt8949_set_gear starts from 1, 2, 3, 4.

3.2 Speed setting

3.2.1 Constant speed motion

The parameter setting is simple. It is only required to set the driving speed to be lower than or equal to the start speed, and other parameters do not need setting.

Related functions:

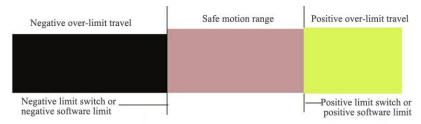
set_startv set_speed

3.2.2 Trapezoidal acceleration/deceleration

This is a most commonly used mode. It requires setting start speed, driving speed and acceleration, and uses automatic deceleration. Related functions:

```
set_startv
set_speed
set_acc
```

3.2.4 STOP0, STOP1 signal


First, STOP0 and STOP1 (encoder Z phase signal) are the signals that every axis has, and thus there are 8 STOP signals totally. These signals are mainly used for home operation. Home mode can use one or several signals accordingly. However, please note that this signal is decelerating stop. For high speed home operation, please add a deceleration switch before the home switch, that is to say, use two STOP signals, one home switch and one deceleration switch. It is also possible to use one signal, which decelerates stop after meeting STOP signal, moves reversely at constant speed and stops after meeting again.

Chapter 4 System Security Mechanism

4.1 Monitoring error message:

Using get_stopdata () function to get the error message can get the stop information of the axis, including the stop caused by hardware limit, stop caused by origin signal, normal stop, and other stops.

4.2 Limit:

The motion control card can use limit switch or software limit to control motion range of axes. If negative limit switch or negative software limit is triggered, it only moves towards positive direction; if positive limit switch or positive software limit is triggered, it only moves towards negative direction; note that the software limit is available only after successful homing.

Use of software limit

The positive and negative limit of software limit is a concept of absolute position rather than an incremental value: the positive limit

ADTECH众为兴

travel and negative limit travel are relative to the origin of the axis. Therefore, in a specific project, be sure to enable the software limit only when each axis has been reset (successful homing), and the mechanical origin at this time is the origin of the axis. The use of software limit needs to call set_soft_limit and enable_soft_limit. See Chapter 14 for detailed explanation of functions.

Chapter 5 High Speed Capture of External Signal Homing

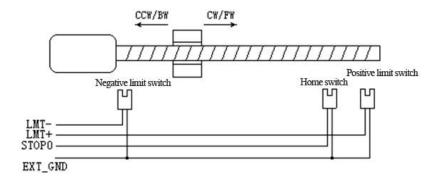
5.1 Homing motion:

List of required functions.	
Set homing mode	SetHomeMode_Ex
Set homing speed	SetHomeSpeed_Ex
Start homing	HomeProcess_Ex
Check status	GetHomeStatus_Ex
Note	See Important Note

5.1.1 List of required functions:

Below is an example of single axis homing; multi-axis is similar.

Use STOP0 as home signal


- (1) Homing is divided into three steps:
 - Step 1: approach stop0 quickly (logical0 home setting), and find stop0;

Step 2: record the locking position, and move to the recorded position.

Step 3: approach stop1 slowly (logical1 encoder Z-phase).

(2) You can choose whether to perform in the third step through

logical1.

5.1.2 Routine

0);

```
void main()
{
    //X-axis homing for example
    const int CARDNO = 0;
    const int X_AXIS = 1;
    int res = -1;
    res = SetHomeMode_Ex(CARDNO, X_AXIS, 0,
        0, 0, -1,
        10, 0,
        0,1);
    res = SetHomeSpeed_Ex(CARDNO, X_AXIS, 2, 10,10,
    res = HomeProcess_Ex(CARDNO, X_AXIS, 2, 10,10,
    res = HomeProcess_Ex(CARDNO, X_AXIS, 16,1000);
    while(true)
    {
```

```
DoEvent();
Sleep(1);
res = GetHomeStatus_Ex(CARDNO,X_AXIS);
if(res == 0)//Homing successfully
{
break;
}
}
```

5.1.3 Important Note

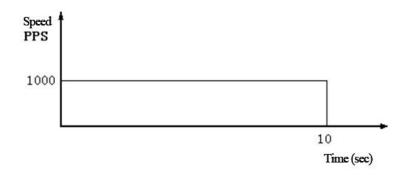
Note the parameters setting for homing. See detailed explanation of functions for the specific meaning of the parameters. The start speed of homing (STOP0) can't be greater than the homing speed. If it is not necessary to search STOP1 signal, set this parameter to -1. When necessary, follow the function instructions to set. Abovementioned is the example of X-axis. For multi-axis homing, just add function calling. Please note that the example doesn't search Z phase signal, i.e. STOP1 signal. When necessary, set and call it.

Chapter 6 Linkage Control

Linkage control includes single axis point motion and multi-axis point motion. The specific implementation in the project depends on the requirement.

All the routines in this chapter are independent of each other. In the process of implementing the project, card initialization and gear only need to be set once in the process of system initialization. For the setting of electronic gear ratio, see Chapter 3 Section 3.1.2 Electronic gear ratio settings.

6.1 Single axis quantitative uniform motion:


6.1.1 List of required functions

Set start speed	adt8949_set_startv
Set driving speed	adt8949_set_speed
Driving instruction	adt8949_pmove
Read driving status	adt8949_get_status
Note	See Important Note

6.1.2 Routine

Purpose:

Let X-axis stepper motor moves 10,000 steps at 1000 pps speed:


```
The procedure is as follows:

#include "adt8949.h"

void main()

{

int cardno;

cardno= adt8949_initial();

if(cardno<=0) return; //ADT8949 card isn't

installed

http://www.adtechcn.com 66
```

ADTECH 众为兴

ADT-8949 4-axis Motion Control Card

```
//Below is the X-axis operation
of the first card; multi-axis operation is allowed
                                //If there is more than one card,
i.e. cardno > 1
                                 //You can modify the card
number to operate other cards
    adt8949_set_pulse_mode(0,1,1,0,0); //Set X-axis to pulse
+ direction
     adt8949_set_gear(0, 1,1000);//1000 pulses run 1mm
    adt8949 set startv(0,1,1);//1000/1000=1
    adt8949 set speed(0,1,1); //If the start speed is greater than
or equal to the //driving speed, it is constant speed motion,
1000/1000=1
    adt8949_pmove(0,1,10); //Start driving 10000/1000=10
    int s;
    while(1)
     {
         adt8949_get_status(0,1,&s);
                                          //Read driving status
         if(s==0)break;
                                      //Driving ends and exits
                                      //Perform reading
keyboard, displaying position and other functions
    return:
```

6.1.3 Important Note

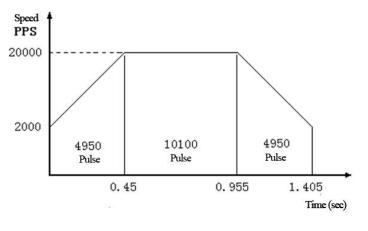
This routine only involves control card initialization function. Before setting the pulse mode and electronic gear ratio mode functions, it only needs to be set in program initialization and doesn't need to set again. **/IDTECH** 流为兴

6.2 Single axis quantitative symmetry trapezoidal acceleration / deceleration motion:

6.2.1 List of required functions:

Set to trapezoidal acceleration / deceleration	adt8949_set_admode
Set start speed	adt8949_set_startv
Set driving speed	adt8949_set_speed
Set acceleration	adt8949_set_acc
Driving instruction	adt8949_pmove
Read driving status	adt8949_get_status
Note	See Important Note

6.2.2 Example:


Purpose:

Let X-axis moves 20,000 steps at the following speed:

Start speed: 2000 pss

Driving speed: 20000 pss

Acceleration / deceleration: 40000 pss


```
Acceleration time should be (20000-2000)/40000=0.45 sec
         Acceleration pulse should be 0.45*(20000+2000)/2=4950
    pcs
         Deceleration is same as acceleration.
    #include "adt8949.h"
    void main()
    {
         int cardno;
         cardno=adt8949 initial();
         if(cardno<=0) return;
                                         //ADT8949 card isn't
    installed
                                     //Below is the X-axis operation
    of the first card
                                    //If there is more than one card,
    i.e. cardno > 1
                                     //You can modify the card
    number to operate other cards
         adt8949_set_pulse_mode(0,1,1,0,0);
                                                   //Set X-axis to
    pulse + direction
         adt8949 set gear(0, 1,1000);//1000 pulses run 1mm
         adt8949 set ad mode(0,1,0);
                                              //Set to trapezoidal
acceleration / deceleration
         adt8949_set_startv(0,1,2); //Start speed 2000/1000=2
         adt8949 set speed(0,1,20);
                                         //Driving speed
                                           20000/1000=20
         adt8949 set acc(0,1,40); //Acceleration / deceleration 40000
/1000=40
         adt8949_pmove(0,1,20);
                                     //Start driving 20000/1000=20
```

6.2.2 Important Note:

This routine only involves control card initialization function. Before setting the pulse mode and electronic gear ratio mode functions, it only needs to be set in program initialization and doesn't need to set again.

6.3 Single axis quantitative asymmetry trapezoidal acceleration / deceleration motion:

6.3.1 List of required functions:

Set to trapezoidal acceleration / deceleration	adt8949_set_admode
Set start speed	adt8949_set_startv
Set driving speed	adt8949_set_speed
Set acceleration	adt8949_set_acc
Set deceleration	adt8949_set_dec
Driving instruction	adt8949_pmove

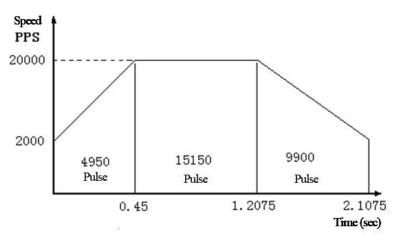
http://www.adtechcn.com 70

ADT-8949 4-axis Motion Control Card

Read driving status	adt8949_get_status
Note	See Important Note

6.3.2 Example:

Purpose:


Let X-axis moves 30,000 steps at the following speed:

Start speed: 2000 pss

Driving speed: 20000 pss

Acceleration: 40000 pss

Deceleration: 20000 pss

Acceleration time should be (20000-2000)/40000=0.45 sec Acceleration pulse should be 0.45*(20000+2000)/2=4950

pcs

Deceleration time should be (20000-2000)/20000=0.9 sec Deceleration pulse should be 0.9*(20000+2000)/2=9900

pcs


```
#include "adt8949.h"
    void main()
     {
         int cardno;
         cardno=adt8949 initial();
         if(cardno<=0) return; //ADT8949 card isn't installed
                                //Below is the X-axis operation of
    the first card
                                //If there is more than one card, i.e.
    cardno > 1
                                //You can modify the card number
    to operate other cards
         adt8949_set_pulse_mode(0,1,1,0,0);//Set X-axis to pulse +
    direction
         adt8949_set_gear(0, 1,1000);//1000 pulses run 1mm
         adt8949 set admode(0,1,1);
                                             //Set to trapezoidal
acceleration / deceleration
         adt8949_set_startv(0,1,2); //Start speed 2000/1000=2
         adt8949_set_speed(0,1,20);
                                          //Driving speed
                                           20000/1000=20
         adt8949 set acc(0,1,40); //Acceleration 40000/1000=40
                                     //Deceleration 20000/1000=20
         adt8949 set dec(0,1,20);
         adt8949 pmove(0,1,20); //Start driving 20000/1000=20
         int s;
         while(1)
         {
              adt8949 get status(0,1,\&s);
                                              //Read driving status
             if(s==0)break;
                                         //Driving ends and exits
                                          //Perform reading
```

keyboard, displaying position and other functions

```
}
return ;
}
```

6.3.3 Important Note:

This routine only involves control card initialization function. Before setting the pulse mode and electronic gear ratio mode functions, it only needs to be set in program initialization and doesn't need to set again.

6.4 Single axis quantitative S-curve acceleration / deceleration motion:

Set to S-curve acceleration / deceleration	adt8949_set_admode
Set start speed	adt8949_set_startv
Set driving speed	adt8949_set_speed
Set acceleration	adt8949_set_acc
Set jerk	adt8949_set_jcc
Driving instruction	adt8949_pmove
Read driving status	adt8949_get_status
Note	See Important Note

6.4.1 List of required functions:

Example 1: Full S-curve

Purpose:

Let X-axis moves 20,000 steps of S-curve acceleration motion at the following speed

```
Start speed: 1000 pss
         Driving speed: 40000 pss
         Acceleration time: 0.4 sec
    #include "adt8949.h"
    void main()
    {
         int cardno;
         cardno=adt8949 initial();
         if(cardno<=0) return;
                                          //ADT8949 card isn't
    installed
                                     //Below is the X-axis operation
    of the first card
                                    //If there is more than one card,
    i.e. cardno > 1
                                     //You can modify the card
    number to operate other cards
         adt8949 set pulse mode(0,1,1,0,0); //Set X-axis to pulse
    + direction
         adt8949_set_gear(0, 1,1000);//1000 pulses run 1mm
         adt8949 set ad mode(0,1,0); //Set to S-curve
acceleration / deceleration
         adt8949 set startv(0,1,1);//Start speed
                                                1000/1000=1
         adt8949_set_speed(0,1,40); //Driving speed
                                           40000/1000=40
         adt8949 set acc(0,1,200);//Acceleration / deceleration
200000/1000=200
         adt8949_set_jcc(0,1,5); //Set jerk or use the default value
         adt8949 pmove(0,1,20);
                                     //Start driving 20000/1000=20
         int s;
```


}

6.5 Single axis quantitative exponential acceleration / deceleration motion:

6.5.1 List of required functions:

Settoexponentialacceleration / deceleration	adt8949_set_admode		
Set start speed	adt8949_set_startv		
Set driving speed	adt8949_set_speed		
Set acceleration	adt8949_set_acc		
Driving instruction	adt8949_pmove		
Read driving status	adt8949_get_status		
Note	See Important Note		

Example 1: Full S-curve

Purpose:

Let X-axis moves 20,000 steps of exponential acceleration motion at the following speed

Start speed: 1000 pss Driving speed: 40000 pss


```
Acceleration time: 0.4sec
    #include "adt8949.h"
    void main()
    {
         int cardno;
         cardno=adt8949 initial();
         if(cardno<=0) return;
                                         //ADT8949 card isn't
    installed
                                     //Below is the X-axis operation
    of the first card
                                    //If there is more than one card.
    i.e. cardno > 1
                                     //You can modify the card
    number to operate other cards
         adt8949_set_pulse_mode(0,1,1,0,0); //Set X-axis to pulse
    + direction
         adt8949_set_gear(0, 1,1000);//1000 pulses run 1mm
         adt8949_set_ad_mode(0,1,2); //Set to exponential
acceleration / deceleration
         adt8949 set startv(0,1,1);//Start speed 1000/1000=1
         adt8949 set speed(0,1,40); //Driving speed
                                           40000/1000=40
         adt8949_set_acc(0,1,200);//Acceleration / deceleration
200000/1000=200
         adt8949 pmove(0,1,20);
                                    //Start driving 20000/1000=20
         int s;
         while(1)
         {
             adt8949_get_status(0,1,&s);
                                              //Read driving status
```


}

```
if(s==0)break; //Driving ends and exits
..... //Perform reading
keyboard, displaying position and other functions
}
return ;
```

6.6 Single axis quantitative trigonometric acceleration and deceleration mode motion:

6.6.1 List of required functions:

Settoexponentialacceleration / deceleration	adt8949_set_admode		
Set start speed	adt8949_set_startv		
Set driving speed	adt8949_set_speed		
Set acceleration	adt8949_set_acc		
Driving instruction	adt8949_pmove		
Read driving status	adt8949_get_status		
Note	See Important Note		

Example 1: Full S-curve

Purpose:

Let X-axis moves 20,000 steps of exponential acceleration motion at the following speed; if the electronic gear ratio is 1000, i.e. 20mm

Start speed: 1000 pss Driving speed: 40000 pss Acceleration time: 0.4sec


```
#include "adt8949.h"
    void main()
    {
         int cardno;
         cardno=adt8949 initial();
         if(cardno<=0) return;
                                         //ADT8949 card isn't
    installed
                                     //Below is the X-axis operation
    of the first card
                                    //If there is more than one card,
    i.e. cardno > 1
                                     //You can modify the card
    number to operate other cards
         adt8949_set_pulse_mode(0,1,1,0,0); //Set X-axis to pulse
    + direction
         adt8949 set gear(0, 1,1000);//1000 pulses run 1mm
         adt8949 set ad mode(0,1,3); // Set to exponential
acceleration / deceleration
         adt8949_set_startv(0,1,1);//Start speed
                                                1000/1000=1
         adt8949_set_speed(0,1,40); //Driving speed
                                           40000/1000=40
         adt8949_set_acc(0,1,200);//Acceleration / deceleration
200000/1000=200
         adt8949_pmove(0,1,20);
                                     //Start driving 20000/1000=20
         int s;
         while(1)
         {
                                              //Read driving status
              adt8949_get_status(0,1,&s);
              Sleep(1);
             if(s==0)break;
                                         //Driving ends and exits
```


..... //Perform reading keyboard, displaying position and other functions } return ;

6.7 Multi-axis motion

}

6.7.1 List of required functions:

Settotrapezoidalacceleration /deceleration	adt8949_set_admode	
Set start speed	adt8949_set_startv	
Set driving speed	adt8949_set_speed	
Set acceleration	adt8949_set_acc	
Set jerk	adt8949_set_jcc	
Driving instruction	adt8949_pmove	
Continuous motion instructions	adt8949_continue_move	
Read driving status	adt8949_get_status	
Note	See Important Note	

Although the above is single axis, you can set the data of additional axes at the same time in practice. They won't affect each other. In X-axis driving, set the parameters of Y-axis properly and then drive the Y-axis. It will not have any effect on the motion of X-axis, so that four axes can be operated independently.

Below is a simple example. X-axis moves 1000 steps at a constant

speed (1000pps), Y-axis moves 300,000 steps in linear acceleration/deceleration (start speed: 10,000pps, drive speed: 200,000pps, acceleration time: 0.2 sec), Z-axis performs complete S-curve accelerated continuous motion (start speed: 1000 pps, drive speed: 4000 pss, acceleration time: 1.2 sec), and W-axis performs continuous motion at a constant speed (300,000 pps); press the "S" key to stop.

6.7.2 Example:

```
The procedure is as follows:
#include <stdio.h>
#include <conio.h>
#include <dos.h>
#include "adt8949.h"
void main()
{
    int cardno;
    cardno=ADT-8949 initial();
    if(cardno<=0) return;
                                      //ADT-8949 card isn't
installed
                                 //Below is the X-axis operation
of the first card
                                //If there is more than one card,
i.e. cardno > 1
                                 //You can modify the card
number to operate other cards
    adt8949_set_pulse_mode(0,1,1,0,0);
                                               //Set X-axis to
pulse + direction
    adt8949_set_pulse_mode(0,2,1,0,0);
                                               //Set Y-axis to
```

pulse + direction adt8949_set_pulse_mode(0,3,1,0,0); //Set Z-axis to pulse + direction adt8949_set_pulse_mode(0,4,1,0,0); //Set W-axis to pulse + direction

adt8949_set_gear(0, 1,1000);//1000 pulses run 1mm adt8949_set_gear(0, 2,1000);//1000 pulses run 1mm adt8949_set_gear(0, 3,1000);//1000 pulses run 1mm adt8949_set_gear(0, 4,1000);//1000 pulses run 1mm //Y-axis acceleration /deceleration setting adt8949_set_admode(0,2,1); // Set to trapezoidal acceleration /deceleration

//Z-axis acceleration /deceleration setting adt8949_set_admode(0,3,0); //Set to S-curve acceleration /deceleration

//X-axis	
adt8949_set_startv(0,1,1);	//Start speed 1000/1000=1
adt8949_set_speed(0,1,1);	//Driving speed
	1000/1000=1

//Y-axis	
adt8949_set_startv(0,2,10);	//Start speed
10000/1000=10	
adt8949_set_speed(0,2,200);	//Driving speed
	200000/1000=200
adt8949_set_acc(0,2,950);	//Acceleration
	950000/1000=950

```
//Z-axis
adt8949_set_startv(0,3,1000);//1000/1000=1
adt8949_set_speed(0,3,4000);//4000/1000=4
adt8949_set_acc(0,3,53); //6667/125=53.3
adt8949_set_jcc(0,3,10);
```

```
//W-axis
adt8949_set_startv(0,4,7500); //300000/1000=300
adt8949_set_speed(0,4,300);//300000/1000=300
adt8949_pmove(0,1,1000); //Start driving 1000/1000=1
adt8949_pmove(0,2,300);//300000/1000=300
adt8949_continue_move(0,3,0);
adt8949_continue_move(0,4,0);
```

```
int s1,s2,s3,s4;
while(1)
{
    adt8949_get_status(0,1,&s1); //Read X driving
    status
        adt8949_get_status(0,2,&s2); //Read Y driving
    status
        adt8949_get_status(0,3,&s3); //Read Z driving
    status
        adt8949_get_status(0,4,&s4); //Read W driving
    status
```

if(s1==0 && s2==0 && s3==0 && s4==0)break; //Driving ends and exits

if(kbhit())

6.7.3 Important Note:

This routine only involves control card initialization function. Before setting the pulse mode and electronic gear ratio mode functions, it only needs to be set in program initialization and doesn't need to set again.

Chapter 7 Interpolation Motion Control

All the routines in this chapter are independent of each other. In the process of implementing the project, card initialization and gear only need to be set once in the process of system initialization. For the setting of electronic gear ratio, see Chapter 3 Section 3.1.2 Electronic gear ratio settings.

7.1 Two-axis linear interpolation (constant speed)7.1.1 List of required functions:

ADT-8949 4-axis Motion Control Card

Set start speed	adt8949_set_startv
Set driving speed	adt8949_set_speed
Driving instruction	adt8949_inp_move4
Read interpolation status	adt8949_get_inp_status
Number of segments of pretreatment cache	adt8949_set_precount
Note	See Important Note

Interpolation speed bases on resultant velocity. Below is a simple example of constant speed linear interpolation. The constant speed driving of arc interpolation is basically same as multi-axis linear interpolation.

7.1.2 Example:

```
The procedure is as follows:
#include "adt8949.h"
void main()
{
    int cardno;
    cardno=adt8949_initial();
                                       //ADT8949 card isn't
     if(cardno<=0) return;
installed
                                  //Below is the X-axis operation
of the first card
                                 //If there is more than one card,
i.e. cardno > 1
                                  //You can modify the card
number to operate other cards
                                           http://www.adtechcn.com
                                                                84
```

adt8949_set_pulse_mode(0,1	,1,0,0);	//Set X-axis to	
pulse + direction			
adt8949_set_pulse_mode(0,2	,1,0,0);	//Set Y-axis to	
pulse + direction			
adt8949_set_pulse_mode(0,3	,1,0,0);	//Set Z-axis to	
pulse + direction			
adt8949_set_pulse_mode(0,4	,1,0,0);	//Set W-axis to	
pulse + direction			
adt8949_set_gear(0, 1,1000);//1000 pulses run 1mm			
adt8949_set_precount(0,0);//Number of segments of			
pretreatment cache			
adt8949_set_startv(0,63,1);	//X start	speed	
1000/1000			
adt8949_set_speed(0,63,1);	//X dri	ving speed	
	1000/1	000	
adt8949_inp_move4(0, 0,10,-	-20,0,0); //X	-Y start	
interpolating			
/	X moving f	orward	
10000/1000			
/	Y moving b	ackward	
20000/1000			
int s1;			
while(1)			

{

adt8949_get_inp_status(0,&s1); //Read interpolation

status

```
if(s1==0)break; //Interpolation ends and exits
...... //Perform reading
```



```
keyboard, displaying position and other functions
}
return ;
}
```

7.1.3 Important Note:

This routine only involves control card initialization function. Before setting the pulse mode and electronic gear ratio mode functions, it only needs to be set in program initialization and doesn't need to set again.

7.2 Two-axis linear interpolation (acceleration / deceleration)

Setacceleration/deceleration mode	adt8949_set_admode
Set start speed	adt8949_set_startv
Set driving speed	adt8949_set_speed
Set acceleration	adt8949_set_acc
Set deceleration	adt8949_set_dec
Interpolation instruction	adt8949_inp_move4
Read interpolation status	adt8949_get_inp_status
Number of segments of pretreatment cache	adt8949_set_precount
Note	See Important Note

7.2.1 List of required functions:

ADTECH众为兴

For the acceleration / deceleration driving of two-axis linear interpolation, set the interpolation axis to trapezoidal acceleration/ deceleration, S-curve acceleration/ deceleration, exponential acceleration/ deceleration, and trigonometric acceleration/ deceleration.

7.2.2 Example:

```
The procedure is as follows:

#include "adt8949.h"

void main()

{

int cardno;

cardno=adt8949_initial();

if(cardno<=0) return; //Al

installed
```

//ADT8949 card isn't

//

//If there is more than one card,

```
i.e. cardno > 1
```

//You can modify the card

number to operate other cards

adt8949_set_pulse_mode(0,1,1,0,0); //Set X-axis to pulse + direction adt8949_set_pulse_mode(0,2,1,0,0); //Set Y-axis to pulse + direction adt8949_set_pulse_mode(0,3,1,0,0); //Set Z-axis to pulse + direction adt8949_set_pulse_mode(0,4,1,0,0); //Set W-axis to pulse + direction adt8949_set_precount(0,0);//Number of segments of

pretreatment cache adt8949_set_gear(0, 1,1000);//1000 pulses run 1mm adt8949_set_gear(0, 2,1000);//1000 pulses run 1mm adt8949 set admode(0,63,1); adt8949 set startv(0,63,1);//X start speed 1000/1000=1 adt8949 set speed(0,63,8); //X driving speed 8000/1000=8 adt8949 set acc(0.63,1)://1000/1000=1 adt8949 set dec(0,63,1);//1000/1000=1 adt8949 inp move4(0,0,10,-20,0,0); //X-Y start interpolating //X moving forward 10000/1000=10//Y moving backward 20000/1000=20 int s1; while(1) { adt8949 get inp status(0,&s1); //Read interpolation status if(s1==0)break: // Interpolation ends and exits //Perform reading keyboard, displaying position and other functions ł return ; } 7.2.3 Important Note:

This routine only involves control card initialization function. Before setting the pulse mode function, it only needs to be set in program initialization and doesn't need to set again.

Linear interpolation is suitable for trapezoidal, S-shaped, exponential, and trigonometric acceleration/deceleration.

7.3 2D arc interpolation (acceleration/deceleration)
7.3.1 List of required functions:

Set acceleration /	adt8949 set admode
deceleration mode	auto949_set_aumode
Set start speed	adt8949_set_startv
Set driving speed	adt8949_set_speed
Set acceleration	adt8949_set_acc
Interpolation instruction	adt8949_inp_arc2
Read interpolation status	adt8949_get_inp_status
Number of segments of pretreatment cache	adt8949_set_precount
Note	See Important Note

Two-axis arc interpolation is generally driven by constant speed or trapezoidal and trigonometric acceleration/deceleration, but can't be driven by S-curve or exponential acceleration/deceleration. Constant speed drive is relatively simple. You just need to set the start speed of the first axis same to the driving speed. Acceleration/deceleration driving requires setting acceleration/deceleration mode. The example below illustrates the driving method by driving a full circle of 10 mm radius.

7.3.2 Example:

The procedure is as follows:		
#include "adt8949.h"		
void main()		
{		
int cardno;		
cardno=adt8949_initial();		
if(cardno<=0) return;	//AD	OT8949 card isn't
installed		
	//Below i	s the X-axis
operation of the first card		
-	//If there	is more than one
card, i.e. $cardno > 1$		
	//You car	n modify the card
number to operate other cards		2
-		
adt8949_set_pulse_mode(0,1,1,0),0);	//Set X-axis to
pulse + direction		
adt8949_set_pulse_mode(0,2,1,0),0);	//Set Y-axis to
pulse + direction		
adt8949_set_pulse_mode(0,3,1,0),0);	//Set Z-axis to
pulse + direction		
adt8949_set_pulse_mode(0,4,1,0),0);	//Set W-axis to
pulse + direction		
adt8949_set_precount(0,0);//Nu	mber of se	egments of
pretreatment cache		
adt8949_set_ad_mode(0,63,1);		//Linear
acceleration / deceleration		
adt8949_set_startv(0,63,1);		//X start

```
JDTECH众为兴
                              ADT-8949 4-axis Motion Control Card
    speed 500/5
         adt8949_set_speed(0,63,4);
                                                       //X driving
                                                   40000/1000
                                           speed
         adt8949 set acc(0.63,4);
                                                //X acceleration
Float m fPulseEnd[4]=\{0,0,10,10\};
Float m_fPulseCenter[4]={10,10,10,10};
         adt8949 inp arc2(0,0,3,m fPulseEnd,m fPulseCenter,1);
    //X-Y clockwise arc interpolation
                                          //End point 0, 0, i.e. draw
    a full circle
                                          // Center position 10, 10
         int s1;
         while(1)
         {
              adt8949_get_inp_status(0,&s1); //Read X-Y
    interpolation status
              if(s1==0)break;
                                     //Interpolation ends and exits
                                     //Perform reading keyboard,
              . . . . . .
    displaying position and other functions
         ł
         return ;
```

7.3.3 Important Note:

}

This routine only involves control card initialization function. Before setting the pulse mode function, it only needs to be set in program initialization and doesn't need to set again.

Arc interpolation is only suitable for trapezoidal and trigonometric acceleration/deceleration.

7.4 3D arc interpolation (acceleration/deceleration)

7.4.1 List of required functions:

Set acceleration /	adt8949_set_admode
deceleration mode	uatos ty_bot_aamode
Set start speed	adt8949_set_startv
Set driving speed	adt8949_set_speed
Set acceleration	adt8949_set_acc
Interpolation instruction	adt8949_inp_arc3
Read interpolation status	adt8949_get_inp_status
Number of segments of pretreatment cache	adt8949_set_precount
Note	See Important Note

Three-axis arc interpolation is generally driven by constant speed or trapezoidal and trigonometric acceleration/deceleration, but can't be driven by S-curve or exponential acceleration/deceleration. Constant speed drive is relatively simple. You just need to set the start speed of the first axis same to the driving speed. Acceleration/deceleration driving requires setting acceleration/deceleration mode. The example below illustrates the driving method by driving a full circle of 10 mm radius.

7.4.2 Example:

```
The procedure is as follows:
#include "adt8949.h"
void main()
{
```


int cardno;	
cardno=adt8949_initial();	
if(cardno<=0) return;	//ADT854 card isn't
installed	
	//Below is the X-axis
operation of the first card	
	//If there is more than one
card, i.e. cardno > 1	
	//You can modify the card
number to operate other cards	
-	
adt8949_set_pulse_mode(0,1,1,	0,0); //Set X-axis to
pulse + direction	
adt8949_set_pulse_mode(0,2,1,	0,0); //Set Y-axis to
pulse + direction	
adt8949_set_pulse_mode(0,3,1,	0,0); //Set Z-axis to
pulse + direction	
adt8949_set_pulse_mode(0,4,1,	0,0); //Set W-axis to
pulse + direction	
adt8949_set_precount(0,0);//Nu	umber of segments of
pretreatment cache	
adt8949_set_gear(0, 1,1000);//1	000 pulses run 1mm
adt8949_set_gear(0, 2,1000);//1	000 pulses run 1mm
adt8949_set_ad_mode(0,63,1);	//Linear
acceleration / deceleration	
adt8949_set_startv(0,63,1);	//X start
speed 500/5	
adt8949_set_speed(0,63,4);	//X driving speed
adt8949_set_acc(0,63,4);	//X acceleration


```
Float m fPulseEnd[4]=\{0,0,10,10\};
Float m_fPulseCenter[4]=\{10, 10, 10, 10\};
         adt8949_inp_arc3(0,0,7,m_fPulseCenter,m_fPulseEnd,1);
    //X-Y clockwise arc interpolation
                                            // End point 0, 0, 10, i.e.
     draw a full circle
                                       //Center position 10, 10, 10
         int s1;
         while(1)
          {
              adt8949_get_inp_status(0,&s1); //Read X-Y
    interpolation status
              if(s1==0)break;
                                       //Interpolation ends and exits
                                       //Perform reading keyboard,
               . . . . . .
     displaying position and other functions
          ł
         return:
     }
```

```
7.4.3 Important Note:
```

This routine only involves control card initialization function. Before setting the pulse mode function, it only needs to be set in program initialization and doesn't need to set again.

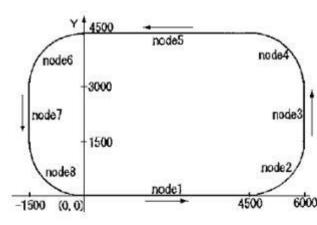
Arc interpolation is only suitable for trapezoidal and trigonometric acceleration/deceleration.

Chapter 8 Track Motion Control

All the routines in this chapter are independent of each other. In the process of implementing the project, card initialization and gear only

need to be set once in the process of system initialization. For the setting of electronic gear ratio, see Chapter 3 Section 3.1.2 Electronic gear ratio settings.

8.1 Cache interpolation


8.1.1 List of required functions:

Set to acceleration/deceleration mode	adt8949_set_admode
Set start speed	adt8949_set_startv
Set driving speed	adt8949_set_speed
Set acceleration	adt8949_set_acc
Set deceleration	adt8949_set_dec
Linear interpolation instruction	adt8949_inp_move4
Arc interpolation instruction	adt8949_inp_arc2
Note	See Important Note

Constant speed interpolation cache is similar to single interpolation.

Just set the start speed same as the driving speed and set the number of preprocessing cache segments to a predetermined value.

Cache interpolation of acceleration/deceleration only requires setting the drive speed greater than the start speed.

Example of Cache Interpolation

In the above case, the start speed is set to 1000 pps, the driving speed is 2000 pps, the acceleration is 2000 pps/sec, the last segment in the figure is arc interpolation and the radius is 1500

8.1.2 Example:

JDTECH众为兴

```
The procedure is as follows:

#include "adt8949.h"

void main()

{

int cardno;

int s1,s2;

//Arc interpolation data

Float m_fPulseEndOne[4]={1500/1000,1500/1000,0,0};

float m_fPulseCenterOne[4]={0,1500/1000,0,0};

Float m_fPulseEndTwo[4]={-1500/1000,1500/1000,0,0};
```

```
float m_fPulseCenterTwo[4]={-1500/1000,0,0,0};
```

//DTECH ADT-8949 4-axis Motion Control Card

```
Float m_fPulseEndThree[4]={-1500/1000,-1500/1000,0,0};
float m_fPulseCenterThree[4]={0,-1500/1000,0,0};
```

Float m_fPulseEndThree[4]={1500/1000,-1500/1000,0,0}; float m_fPulseCenterThree[4]={1500/1000,0,0,0};

<pre>cardno=adt8949_initial(); if(cardno<=0) return;</pre>	//ADT8949 card isn't
installed	//Below is the X-axis operation
of the first card	//If there is more than one card,
i.e. cardno > 1	// X
number to operate other cards	//You can modify the card
adt8949_set_pulse_mode(0	0,1,1,0,0); //Set X-axis to
pulse + direction	
adt8949_set_pulse_mode(0 pulse + direction	0,2,1,0,0); // Set Y-axis to
•));//Number of segments of
pretreatment cache adt8949_set_gear(0, 1,100 adt8949_set_gear(0, 2,100	
adt8949_set_admode(0,63, acceleration / deceleration	1); //Linear
adt8949_set_startv(0,63,5) adt8949_set_speed(0,63,20	-
•	

adt8949_set_acc(0,63,20);	//Acceleration
adt8949_set_dec(0,63,10);	//

//Segment 1
adt8949_inp_move4(0,0,4500/1000,4500/1000,0,0);
//Segment 2
adt8949_inp_arc2(0,0,3,m_fPulseEndOne,m_fPulseCenter
One,0);
//Segment 3
adt8949_inp_move4(0,0,0,1500/1000,0,0);
//Segment 4
adt8949_inp_arc2(0,0,3,m_fPulseEndTwo,m_fPulseCenter

Two,0);

```
//Segment 5
    adt8949_inp_move4(0,0,-4500/1000,0,0,0);
    //Segment 6
    adt8949_inp_arc2(0,0,3,m_fPulseEndThree,m_fPulseCente
rThree,0);
    //Segment 7
    adt8949_inp_move4(0,0,0,-1500/1000,0,0);
    //Segment 8
    adt8949_inp_arc2(0,0,3,m_fPulseEndThree,m_fPulseCente
rThree,0);
    return ;
}
```

8.1.3 Important Note:

This routine only involves control card initialization function.

Before setting the pulse mode and electronic gear ratio mode functions, it only needs to be set in program initialization and doesn't need to set again.

The number of pretreatment segment should be set. Only interpolation cache over 10000 segments needs to be queried with adt8949_get_fifo_len.

Chapter 9 Universal Digital I/O

The motion control card provides users with a universal digital input/output port. The host can operate the input/output port through instructions.

9.1 Input port definition: See Hardware CHAPTER 2Electrical Connection for specific definition9.2 Output port definition: See Hardware CHAPTER2 Electrical Connection for specific definition

9.3 Output port:

9.3.1 List of required functions:

Output function	write_bit
Note	See Important Note

9.3.2 Example:

The procedure is as follows: 1# port for example, turn on the output

```
#include "adt8949.h"
void main()
{
    int cardno;
```



```
cardno=adt8949_initial();
if(cardno<=0) return; //ADT8948 card isn't
installed
write_bit(0,1,1);
return ;
}
```

9.3.3 Important Note:

Output port defines port number as needed.

9.4 Input port:

9.4.1 List of required functions:

Read the function of input point	read_bit
Note	See Important Note

9.4.2 Example:

The procedure is as follows: 1# port for example, read the voltage level of 1# port, low level active

```
#include "adt8949.h"
void main()
{
    int cardno;
    cardno=adt8949_initial();
    if(cardno<=0) return; //ADT8948 card isn't
installed
    int value = -1;
    value = read_bit(0,1);
    if(value == 0)
    {
        //Perform other corresponding operations
    }
}</pre>
```

```
}
return ;
}
```

JDTECH众为兴

9.4.3 Important Note:

This function is called according to the return value of the port.

Chapter 10 Auxiliary Control

All the routines in this chapter are independent of each other. In the process of implementing the project, card initialization and gear only need to be set once in the process of system initialization. For the setting of electronic gear ratio, see Chapter 3 Section 3.1.2 Electronic gear ratio settings.

11.1 Position locking:

Locking mode	set_lock_position//	
Check if position lock is executed	get_lock_status	
Get locking position	get_lock_position	
Note	See Important Note	

11.1.1 List of required functions:

11.1.2 Example:

Purpose:

Describe binding locking signal with X-axis for example #include "adt8949.h"

void main()

```
ł
    int cardno;
    int status = -1;
    long pos = -1;
    cardno=adt8949 initial();
    if(cardno<=0) return;
                                       //ADT8948 card isn't
installed
                                  //Below is the X-axis operation
of the first card
                                 //If there is more than one card.
i.e. cardno > 1
                                  //You can modify the card
number to operate other cards
    set_lock_position (0,1,0,0);
      get_lock_status(0, 1, &status);
      if(status == 1)
     {
       get_lock_position(0, 1, &pos);
     }
     return;
}
```

11.1.3 Important Note:

1DTECH众为兴

One locking signal is bound to one axis.

This routine only involves control card initialization function. Before setting the pulse mode and electronic gear ratio mode functions, it only needs to be set in program initialization and doesn't need to set again.

Chapter 11 List of ADT8949 Basic Library Functions

Function Category	Function Name	Description	Page
	adt8949_initial	Initialize the card	12.1.1
	adt8949_close_card	Close source of motion card	12.1.2
	adt8949_get_lib_version	Get current library version	12.1.3
	adt8949_get_firmware_ver	Get current firmware version	12.1.4
Basic	adt8949_set_pulse_mode	Settheworkingmodeof output pulse	12.1.5
paramete rs	adt8949_set_limit_mode	Limit mode	12.1.6
	adt8949_set_stop0_mode	Stop mode	12.1.7
	adt8949_set_stop1_mode	Stop mode	12.1.8
	adt8949_set_input_mode	Setinputsignalmode(includingpositive/negativelimit,home)	12.1.9
	adt8949_set_gear	Set the electronic gear	12.1.1 0

List of V100 library functions

		ratio of each axis (default: 1000)	
	adt8949_set_input_filter	Set filter level of input signal	12.1.1 1
	adt8949_set_actual_count_mod e	Set the working mode of actual counter (encoder input)	12.1.1 2
	adt8949_set_emergency_stop_ mode	Set the mode of positive/negati ve limit input nLMT signal and stop signal mode	12.1.1 3
Reset	adt8949_reset_card	Reset the motion card	12.2.1
	adt8949_get_status	Get axis drive state	12.3.1
Drive status checking	adt8949_get_status_all	Get the drive state of all axes	12.3.2
enceking	adt8949_get_inp_status	Get interpolation drive status	12.3.3
Motion paramete	adt8949_set_precount	Set the number of	12.4.1

r setting		interpolation	
		cache	
		segments	
		(default: 0)	
	- 49040	Set S-shaped	12.4.2
	adt8949_set_jcc	jerk	12.4.2
		Set axis	
	adt8949_set_acc	acceleration	12.4.3
		(set_acc)	
		Set axis	
	adt8949_set_dec	deceleration	12.4.3
		(set_dec)	
		Set axis	
		acceleration/	10 4 4
	adt8949_set_admode	deceleration	12.4.4
		mode	
	adt2040 act amound	Set axis	12.4.5
	adt8949_set_speed	running speed	12.4.5
		Set speed	
	adt8949_set_speed_constraint	constraint for	12.4.6
	adto949_set_speed_constraint	motion path	12.4.0
		connection	
		Set	
		acceleration	
	adt8949_set_acc_constraint	constraint for	12.4.7
		motion path	
		connection	
	adt8949_set_arc_speed_clamp	Set arc speed	12.4.
	auro 749_sci_arc_specu_cramp	clamp	8
	adt8949_set_startv	Set start speed	12.4.5

ADT-8949 4-axis Motion Control Card

		of axis	
	adt8949_set_endv	Set end speed of axis	12.4.5
	adt8949_set_command_pos	Set axis pulse logic position	12.4.9
	adt8949_set_actual_pos	Set axis pulse actual position	12.4.1 0
	adt8949_set_syncpos	Synchronize axis cache position and actual position	12.4.1 1
	adt8949_set_precount	Set the number of pretreatment cache segments	12.4.1 2
	adt8949_set_follow_axis	Set follow axis	12.4.1 3
	adt8949_set_rate1	Set total speed rates	12.4.1 4
	adt8949_set_rate2	Set speed rate of single axis	12.4.1 5
	adt8949_set_input_filter	Set filter level of input signal	12.4.1 6
Paramete r	adt8949_get_command_pos	Get the logical location of each axis	12.5.1
checking	adt8949_get_actual_pos	Get the actual position of http://www.adtechcn.	12.5.2

	each axis	
adt8949_get_speed	Get current driving speed of each axis	12.5.3
adt8949_get_fifo_len	Query remaining segments in 10000 segments interpolation cache area	12.5.4
adt8949_get_arc2_length	Get the length of two-axis arc	12.5.5
adt8949_get_arc3_length	Get the length of three-axis arc	12.5.6
adt8949_get_fifo_len	Query remaining segments in 10000 segments interpolation cache area	12.5.7
adt8949_get_syserr	Get the latest error number of the system	12.5.8
adt8949_get_stopdata	Get the stop data of each axis	12.5.9

	adt8949_pmove	Single axis quantitative motion Absolute coordinates	12.6.1
	adt8949_abs_pmove quantitative driving	quantitative driving	12.6.2
	adt8949_continue_move	Single axis continuous motion	12.6.3
	adt8949_inp_arc2	Two-axis arc interpolation	12.6.4
	adt8949_inp_arc3	Three-axis arc interpolation	12.6.5
Driving	adt8949_inp_abs_move4	Set four-axis interpolation instruction (absolute position)	12.6.6
	adt8949_inp_move4	Set four-axis interpolation instruction (relative position)	12.6.7
	adt8949_time_move4	Four-axis relative coordinates linear interpolation (specify	12.6.8

-				
		motion time)		
		Four-axis		
		absolute		
		coordinates		
	adt8949_time_abs_move4	linear	12.6.9	
	interpolation			
		(specify		
		motion time)		
		NURBS	12.6.1	
	adt8949_inp_NURBS	interpolation	0	
		Driving	10 (1	
	adt8949_dec_stop	deceleration	12.6.1	
		stop	1	
		Driving	12.6.1	
	adt8949_sudden_stop	immediately		
		stop	2	
		Get input IO	12.7.1	
	adt8949_read_bit	status		
		(read_bit)		
		Set output IO		
	adt8949_write_bit	status	12.7.1	
Switch quantity		(write_bit)		
		Get output	:	
	adt8949_get_out	point status	12.7.1	
		Read IO status	^{IS} 12.7.2	
	adt8949_get_gpio	by group		
		Operate output	1	
	adt8949_set_gpio	by group	12.7.3	
		Set voltage	12.7.4	
	adt8949_set_multi_io	level for		
http://www.adtechcn.com 109				

		multiple	
		output points	
FIFO operation output	adt8949_set_fifo_event	Set FIFO event	12.8.1
	adt8949_set_fifo_io	Single point IO output in interpolation	12.8.2
	adt8949_set_fifo_multi_io	Set voltage level for multiple output points in interpolation	12.8.3
	adt8949_set_fifo_delay	Specific position delay motion in interpolation	12.8.4
	adt8949_set_fifo_pulser	Insert pulse generator in interpolation	12.8.5
	adt8949_set_lock_position	Set position locking function	12.9.1
Position locking	adt8949_get_lock_status	Get position locking status	12.9.2
	adt8949_get_lock_position	Getthepositionofpositionlocking	12.9.3
	adt8949_clr_lock_status	Clear locking	12.9.4

		status	
	adt8949_set_EXlock_position	Set extended position locking function	12.9.5
	adt8949_get_EXlock_status	Get extended position locking status	12.9.6
	adt8949_get_EXlock_position	Getthepositionofextendedpositionlocking	12.9.7
	adt8949_clr_EXlock_status	Clear extended locking status	12.9.8
Handwhe el function	adt8949_set_hand_wheel_mode	Set handwheel function mode	12.10. 1
DA output	adt8949_set_daout	Set DA output voltage	12.10. 1
	adt8949_SetHomeMode_Ex	Set home parameter	13.11. 1
Homing module	adt8949_SetHomeSpeed_Ex	Home speed parameter	13.11. 2
	adt8949_HomeProcess_Ex	Start homing	13.11. 3
	adt8949_GetHomeStatus_Ex	Get home status	13.11. 4

Chapter 12 Detailed Description of ADT8949 Basic

Library Functions

12.1 Basic parameter setting

12.1.1 Initialize the card

Function	int _stdcall adt8949_initial(void)	
Function	Initialize the card	
description:		
Parameter	None	
settings:		
Return	• If return value >0, it indicates the quantity of	
value:	ADT8949 cards. If it is 3, the available card	
	numbers will be 0, 1 and 2 respectively;	
	◆ If return value =0, no ADT8949 card is installed;	
	◆ If return value <0, -1 indicates port drivers are not	
	installed;	
	◆ -2 indicates PCI bridge failure.	
	♦ -3 indicates DSP program download error	
	◆ -4 indicates hardware exception or DLL version	
	does not match	
	♦ -5 indicates failed to create mutex	
	◆ -6 indicates failed to open mutex	
	◆ -7 indicates other causes	

12.1.2 Close source of motion card:

Function	int adt8949_close_card(void)
Function	Close source of motion card
description:	
Parameter	No
settings	
Return	0: Successful; -1: Failed
value:	
Remark	After calling this function, the control card will
	automatically reset, clear all motion instructions, and
	clear all output points;
	Using VB6.0 programming, if this function isn't called,
	the encoder may exit unexpectedly

12.1.3 Get current library version:

Function	int adt8949_get_lib_version(int cardno)
Function	Get current library version
description	
Parameter	cardno : Card number
settings	
Return	• Version number of the library
value:	
Remark	ADT-8949 has driver library version number and firmware version number. The same firmware version may have different driver library version, so pay attention to the information of both version numbers for problem tracing.

12.1.4 Get current firmware version:

Function	int adt8949_get_firmware_ver(int cardno)	
Function	Get current firmware version	
description		
Parameter	cardno : Card number	
settings		
Return	• Return value contains the information of firmware	
value:	version and card ID.	
	• The first five digits indicate card DIP ID.	
	◆ The last 27 digits indicate the firmware version	
Remark	◆ ADT-8949 has driver library version number and	
	firmware version number. The same firmware	
	version may have different driver library version, so	
	pay attention to the information of both version	
	numbers for problem tracing.	

12.1.5 Set the work mode of output pulse

Functio	int adt8949_set_pulse_mode(int cardno, int axis, int value,int	
n	logic,int dir_logic);	
Functio	Set the work mode of output pulse	
n	Default mode: pulse + direction, positive logic pulse,	
descripti	positive logic direction signal	
on		
Paramet	cardno Card number	
er	axis Axis number (1-4)	
settings	value 0: pulse + pulse 1: pulse + direction	
	logic 0: positive logic pulse, 1: negative logic pulse	
	dir-logic 0: positive logic direction signal, 1: negative	
	logic direction signal	
Return	• 0: Correct	

value:	◆ Non-0: Wrong	5		
Remark	Fig. 1:			
		Both pul	lse and direction are po	sitive logic setting
	Pulse output mode	Driving direction	Output sign	
			PU/CW signal	DR/CCW signal
	Independent two pulses mode	+ direction driving output		Low level
		- direction driving output	Low level	
		+ direction driving output	···	Low level
	One pulse mode	- direction driving output		High level
	Fig. 2: Positive logic pulse : Fig. 3:	 Negative le	ogic pulse:	
	Positive logic pulse : Fig. 3:		1	tion pulse output
	Positive logic pulse : Fig. 3:	ve direction pulse output	Negative direct	tion pulse output

12.1.6 Set positive/negative limit signal mode:

Function	int adt8949_set_input_mode(int cardno,int axis, int		
	v1,int v2,int logic);		
Function	Sat positiva/pagativa limit moda		
description	Set positive/negative limit mode		
Parameter	cardno Card number		
settings	axis Axis number (1-4)		
	v1 0: Positive limit active, 1: Positive limit		
	inactive		
	v2 0: Negative limit active, 1: Negative limit		
	inactive		
	logic 0: Low level active, 1: High level active		
Return	0: Correct Non-0: Wrong		

value:	
Remark	The default mode is: positive limit active, negative limit
	active, low level active

12.1.7 Set STOP0 (mechanical home) signal mode:

Function	int adt8949_set_stop0_mode(int cardno,int axis, int v,int		
	logic,int admode);		
Function	Set positi	ve/negative limit mode	
description	Set positi	ve/negative mint mode	
Parameter	cardno	Card number	
settings	axis	Axis number (1-4)	
	v	0: Inactive	1: Active
	logic	0: Low level active,	1: High level
	active		
	admode	0: Deceleration stop,	1: Immediate stop
Return	0: Correc	t Non	0. Wrong
value:	0. Conec	t INOII-	0: Wrong
Remark	The defau	alt mode is: STOP0 inactiv	/e

12.1.8 Set STOP1 (servo home) signal mode:

Function	int adt8949`_set_stop1_mode(int cardno,int axis, int v,int		
	logic,int	logic,int admode);	
Function description	Set positi	ive/negative limit mode	
Parameter	cardno	Card number	
settings	axis	Axis number (1-4)	
	v	0: Inactive	1: Active
	logic	0: Low level active,	1: High level
	active		
	admode	0: Deceleration stop,	1: Immediate

	stop	
Return value:	0: Correct	Non-0: Wrong
Remark	The default mode is: STOP1 inactive	

12.1.9 Set input signal mode (including positive/negative limit, home):

home):			
Function	int adt8949_set_input_mode(int cardno,int axis,int		
	mode, int port, int logic, int admode);		
Function	Set input signal mode (including positive/negative limit,		
description	home)		
Parameter	cardno Card number		
settings	axis Axis number (1-4)		
	mode 0: Positive limit, 1: Negative limit		
	2: Home (or encoder Z phase signal)		
	port Input port number quickly (0-18, 36-47), 255or		
	-1: Set corresponding mode to inactive; in addition, the		
	corresponding ports of encoder signals (phase A, B & Z)		
	of the four driving axes:		
	IN36~IN39: A1A4		
	IN40~IN43: B1B4		
	IN44~IN47: Z1Z4		
	logic Active voltage level: 0: Low level active, 1:		
	High level active		
	admode Whether use deceleration when limit is active,		
	0: deceleration stop; 1: immediate stop		
Return	0: Correct Non-0: Wrong		
value:			
Remark	To facilitate the setting of machine limit, home, and		
	servo phase-Z signal, the following functions have been		

packaged:	adt8949_set_limit_mode(),
adt8949_set_stop0_mode(),
adt8949_set_stop1_mode()
The default mode is: Po	sitive limit low level active,
negative limit low level a	ctive, home signal (or encoder
Z-phase signal) inactive;	
Positive and negative li	mit temporarily support the
immediate stop mode only	•
The home or encoder Z	-phase signal mode used for
	at the same time. You can set
homing first and then reset	t encoder Z-phase.

12.1.10 Set electronic gear ratio of axis:

Function	int adt8949_set_gear(int cardno, int axis,float gear)
Function	Set the electronic gear ratio of each axis, i.e. the pulses
description	corresponding to 1mm
	Default: 1000, i.e. 1000 pulses moves 1mm
Parameter	cardno Card number
settings	axis Axis number (1-4)
	gear Gear ratio
	Default: 1000
Return	0: Correct Non-0: Wrong
value:	
Remark	

12.1.11 Set the filter level of input signal:

Function	int	adt8949_set_input_filter(int	cardno,int	gp,int
	grade);			
		http:/	//www.adtechcn.co	m 118

Function	Set the filter	level of input signal
description	The default r	node is no filter for all input signals.
Parameter	cardno Card number	
settings	gp	Input signal types
		0: limit, home, common IO
		1: encoder signal (A, B, Z)
	grade	Range: 0-15. 0 indicates no filter; if it is
	set to n, the f	ilter time is 2 ⁽ⁿ⁻¹⁾ us
Return	0: Correct	Non-0: Wrong
value:		
Remark		

12.1.12 Set the working	mode of actual	position of	counter (enco	oder
-------------------------	----------------	-------------	---------------	------

input):

<i>,</i>		
Function	int adt8949_set_actual_count_mode(int cardno, int axis,	
	int value, int dir_logic);	
Function	Set the working mode of actual position counter	
description	(encoder input)	
	Default mode: A/B phase pulse input, positive direction	
	logic	
Parameter	cardno Card number	
settings	axis Axis number (1-6), X-axis number of	
	handwheel is 5, and Y-axis number is 6	
	value 0: A/B pulse input 1: up/down	
	(PPIN/PMIN) pulse input	
	dir_logic count direction, 0: input signal direction	
	positive logic, 1: input signal direction negative logic	
Return	0: Correct Non-0: Wrong	
value:		
Remark	When it is set to A/B phase pulse input, the pulse count	
	is the data by 4 times frequency multiplication	

メロTECH(ネカ米) ADT-8949 4-axis Motion Control Card

12.1.13 Set the mode of positive/negative limit input nLMT signal and stop signal mode:

Function	int adt8949_set_emergency_stop_mode(int cardno,int
	port,int logic);
Function	Set the mode of positive/negative limit input nLMT
description	signal and stop signal mode
Parameter	cardno Card number
settings	port input port number quickly (0-18, 36-47), 255 or
	-1: set corresponding mode to inactive
	logic active voltage level 0: Low level active, 1:
	High level active
Return	0: Correct Non-0: Wrong
value:	
Remark	Remark: Emergency stop is inactive by default. Once
	external emergency stop is active, you need to call
	adt8949_reset_card() to reset the motion card, or else
	the calling of any motion instruction will be inactive
	even if the emergency stop active level has been
	canceled.

12.2 Reset motion card

12.2.1 Reset motion card

Function	int adt8949_	reset_card(int card)	no);	
Function	Reset motion	n card		
description				
Parameter	cardno	Card number		
settings				
Return	0: Correct	-1: Wrong		
			http://www.adtechcn.com	120

value:			
Remark	After calling this function, the control will clear all cache		
	events and motion instruction data; if synchronized axis		
	has been set, the synchronization relationship of axes		
	will also be cleared, but limit, acceleration, gear ratio and		
	other motion parameters that have been set won't be		
	cleared, and do not need to re-set;		
	When the machine has external emergency stop,		
	positive/negative limit or abnormal stop, or before cache		
	interpolation of large amount of data, it is recommended		
	to call the function to reset the control card.		

12.3 Driving status checking

12.3.1 Get the driving status of each axis

Function	int adt8949_get_status(int cardno,int axis,int *v)	
Function	Get the driving status of each axis	
description		
Parameter	cardno Card number	
settings	axis Axis number (1-4)	
	v Pointer of driving status	
	0: Driving ends	
	Non-0: Driving	
Return value	0: Correct 1: Wrong	
Remark	This function is used to query API. For consecutive	
	query, insert a Sleep(1) sentence between two queries	

12.3.2 Get driving status of all axes:

Function	int adt8949_get_status_all(int cardno,int *v)		
Function	Get driving status of all axes		
description			
Parameter	cardno Card number		
settings	v Pointer of driving status		
	0: Driving ends		
	Non-0: Driving		
Return value	0: Correct 1: Wrong		
Remark	This function is used to query API. For consecutive		
	query, insert a Sleep(1) sentence between two queries		

12.3.3 Get driving status of interpolation:

Function	int adt8949_get_inp_status(int cardno,int *v)	
Function	Get driving status of interpolation	
description		
Parameter	cardno	Card number
settings	v	Pointer of driving status
		0: Driving ends
		Non-0: Driving
Return value	0: Corre	ct 1: Wrong
Remark		

12.4 Motion parameter setting

●* Note: The following parameters are uncertain after initialized and should be set before using

12.4.1 Set cache segments of interpolation:

Function	int adt8949_set_precount(int cardno,unsigned short prec)
Function	Set cache segments of interpolation; default: 0
	http://www.adtechcn.com 122

description	
Parameter	cardno Card number
settings	prec Preview segments
Return value	0: Correct 1: Wrong
Remark	

12.4.2 Set S-shaped jerk:

Function	int adt8949_set_jcc(int cardno, int axis,unsigned short
	jcc);
Function	Set S-shaped jerk; default: 0
description	
Parameter	cardno Card number
settings	axis Axis number (1-4, number of interpolation
	axis: INPA_AXISREG)
	Jcc Jerk: 0~10
Return value	0: Correct Non-0: Wrong
Remark	• The smaller the Jcc value, the more obvious the S
	acceleration/deceleration effect

12.4.3 Set axis acceleration (adt8949_set_acc) and deceleration (adt8949_set_dec):

Function	int adt8949_set_acc(int cardno, int axis,float add)	
	int adt8949_set_dec(int cardno, int axis,float add)	
Function	Set axis acceleration (set_acc) and deceleration (set_dec)	
description	Unit: mm/sec^2	
	Default: acceleration = deceleration =500mm/sec^2	
Parameter	cardno Card number	

settings	axis 1~4 single axis
	INPA_AXISREG interpolation axis
	add Acceleration/deceleration value (100~100000)
Return value	0: Correct 1: Wrong
Remark	♦ ADT-8949 supports asymmetric
	acceleration/deceleration; when setting acceleration,
	deceleration will be equal to the acceleration by
	default; therefore, to set the deceleration, place
	set_dec after set_acc, or else the deceleration value
	will be overwritten by acceleration.
	◆ INPA_AXISREG is the axis number of group A
	interpolator, interpolation acceleration/deceleration,
	which calculates the synthesized position, is also set
	independently; therefore, the
	acceleration/deceleration of interpolation axis is less
	than or equal to interpolation
	acceleration/deceleration.
	#define INPA_AXISREG 0x3f

12.4.4 Set axis acceleration/deceleration mode:

Function	int adt8949_set_admode(int cardno, int axis,unsigned
	short mode)
Function	Set axis acceleration/deceleration mode
description	
Parameter	cardno Card number
settings	axis Axis number (1-4, number of
	interpolation axis: INPA_AXISREG)
	mode Range (0-3)
	0 S-shaped acceleration/deceleration mode

	1 trapezoidal acceleration/deceleration mode		
	2 exponential acceleration/deceleration mode		
	3 trigonometric acceleration/deceleration mode		
Return value	0: Correct 1: Wrong		
Remark	Remark: The default option is trapezoidal acceleration/		
	deceleration mode		
	Point motion and single linear interpolation can use any		
	mode,		
	Single arc interpolation uses mode 1 and 3.		
	Spline interpolation uses mode 1.		
	To use non-trapezoidal acceleration/deceleration mode in		
	interpolation, ensure that the segment of pretreatment		
	cache is zero.		

12.4.5 Set axis running speed, start speed and end speed in sequence:

Function	int adt8949_set_speed(int cardno, int axis,float speed);		
	int adt8949_set_startv(int cardno, int axis,float speed);		
	int adt8949_set_endv(int cardno, int axis,float speed);		
Function	Set axis running speed, start speed and end speed in		
description	sequence		
Parameter	cardno Card number		
settings	axis 1~4 single axis		
	INPA_AXISREG interpolation axis		
	speed Speed, unit: mm/sec,0.001~100000		
Return value	0: Correct Non-0: Wrong		
Remark	◆ If endv is set before startv, default endv= startv		

ADTECH (2015) ADT-8949 4-axis Motion Control Card

12.4.6 Set the maximum axis speed at the connection of two line segments in cache interpolation:

Function	int adt8949_set_speed_constraint (int cardno, int		
	axis,float speed);		
Function	Set speed constraint at motion path connection		
description			
Parameter	cardno Card number		
settings	axis 1~4 single axis		
	INPA_AXISREG interpolation axis		
	speed Speed, unit: mm/sec,0.001~100000		
Return value	0: Correct Non-0: Wrong		
Remark	• This function doesn't need to be called generally.		
	◆ In special process, it is used to set the maximum		
	axis speed at the connection of two line segments in		
	cache interpolation; it is active in pretreatment, and		
	limits the maximum speed of each axis at the		
	connection of line segments.		

12.4.7 Set the acceleration constraint of axis in cache interpolation; active in pretreatment, limit the maximum speed change of each axis at the connection of line segments:

Function	int adt8949_set_acc_constraint(int cardno, int axis,float		
	add);		
Function	Set acceleration constraint at motion path connection		
description			
Parameter	cardno Card number		
settings	axis Axis number (1-4)		

	EC	A 71	
		V\/ 3	

	add Range (100-100000), default:
	500mm/sec^2
Return value	0: Correct Non-0: Wrong
Remark	 In cache interpolation, it is used to set the acceleration constraint of axis; it is active in pretreatment, and limits the maximum speed change of each axis at the connection of line segments. In the debugging process, constraint value can be gradually increased as long as the interpolation accuracy won't be affected, which will reduce machine shake in interpolation.

12.4.8 Set arc speed clamp:

Function	int adt8949_set_arc_speed_clamp(int cardno, float		
Function			
	radius,float speed);		
Function	When using cache interpolation, set axis acceleration		
description	constraint active in pretreatment, and limit the maximum		
	speed changes of each axis at the connection of line		
	segments		
Parameter	cardno Card number		
settings	radius Radius coefficient		
	speed Speed coefficient, range (0.01-100000		
	mm/sec)		
	Default Radius coefficient = 10mm, speed		
	coefficient = 100mm/sec		
Return value	0: Correct Non-0: Wrong		
Remark	• The function will be active in flat arc or spatial arc		
	interpolation; if the function is called and the actual		
	radius is smaller than the radius coefficient, the arc		

speed is less limited;

If the actual radius is larger than the radius coefficient, the arc speed limit is greater. If the actual radius is equal to the radius coefficient, the maximum speed of arc is equal to the speed coefficient.

12.4.9 Set logic position of axis pulse:

Function	int adt8949_set_command_pos(int cardno, int axis,long		
	pos)		
Function	Set logic position of axis pulse		
description			
Parameter	cardno Card number		
settings	axis 1~4 single axis		
	pos Logic position		
	Set range (-2147483648~+2147483647)		
Return value	0: Correct Non-0: Wrong		
Remark	◆		

12.4.10 Set actual position of axis pulse:

Function	int adt8949_set_actual_pos(int cardno, int axis,long		
	pos);		
Function	Set actual position		
description			
Parameter	cardno Card number		
settings	axis Axis number (1-6), X-axis number of		
	handwheel is 5, and Y-axis number is 6		
	pos Range (-2147483648~+2147483647)		

Return value	0: Correct	-1: Wrong
Remark	•	

12.4.11 Axis cache position and logic position synchronization:

Function	int adt8949_set_syncpos(int cardno, int axisbit)		
Function	Axis cache position and logic position synchronization		
description			
Parameter	cardno Card number		
settings	axisbit Axis mapping bit		
Return value	0: Successful; non-0: Failed		
Remark	Set after zeroing and tool setting and before one group of		
	interpolation motion to improve accuracy. Do not set		
	when the machine is in motion.		

12.4.12 Set number of pretreatment cache segments:

Function	int adt8949_set_precount(int cardno,unsigned short		
	prec);		
Function	Set number of pretreatment cache segments		
description			
Parameter	cardno Card number		
settings	prec Number of cache segments		
Return value	0: Successful; non-0: Failed		
Remark			

12.4.13 Set follow axis:

Function	intadt8949_set_follow_axis(int cardno,int		
	slaveaxis,int masteraxis);		
Function	Set follow axis		
description			
Parameter	cardno Card number		
settings	slaveaxis Slave axis (following master axis), Axis		
	number (1-4)		
	masteraxis Master axis (followed by slave axis),		
	Axis number (0-4), 0: cancel follow		
Return value	0: Successful; non-0: Failed		
Remark			

12.4.14 Set total speed rate:

Function	int adt8949_set_rate1(int cardno,float rate);
Function	Set total speed rate
description	
Parameter	cardno Card number
settings	rate Rate (0~2.0)
Return value	0: Successful; -1: Failed
Remark	Refresh immediately; if the rate of change is too large, it
	will cause speed step; the ideal method is to set timing
	gradually to produce a deceleration effect; when the rate
	is set to 0, the effect is equivalent to suspend.
	◆ ADT-8949 does not support online speed change.
	The value is to change the speed dynamically in the
	concept of rate, and acceleration/deceleration also
	will be changed accordingly. The
	acceleration/deceleration mode will not be affected,
	that is, when S-shaped acceleration/deceleration is

ADT-8949 4-axis Motion Control Card
 selected, the acceleration curve is still S shape even if the speed rate is set to the highest.
 All axes are affected rate1 in all modes; when rate1 is set to 0, the effect is equivalent to suspend.
 Rate1 refreshes immediately; so if the rate of change is too large, it will cause speed step; the ideal method is to set timing gradually to produce a deceleration effect.
 The impact of rate1 on actual speed also depends

The impact of rate1 on actual speed also depends on rate2,; the actual axis speed = rate1 * rate2 [axis] * speed;

Function	int adt8949_set_rate2(int cardno,int axis ,float rate);		
Function	Set speed rate of each axis		
description			
Parameter	cardno Card number		
settings	axis Axis		
	number :Ax,Ay,Az,Aa,INPA_AXISREG,		
	INPB_AXISREG		
	rate Rate (0~2.0)		
Return value	0: Successful; -1: Failed		
Remark	Remark: After calling this function, the speed rate of the		
	axis will refresh immediately, so if the rate of change is		
	too large, it will cause speed step; the ideal method is to		
	set timing gradually to produce a deceleration effect.		
	• It has same effect as rate1, but the scope is only		
	limited to the specified axis number.		
	• Rate2 also refreshes immediately, so pay attention		
	to speed step; set update gradually according to the		

12.4.15 Set speed rate of single axis:

/IDTECH 众为兴		ADT-8949 4-axis Motion Control Card
	note of rat	te1.
•	The impa	ct of rate2 on the actual speed of the axis
	is rate1 *	rate2 [axis] * speed
		iple proportions of rate1 and rate2, the
spe	ed can be ir	ncreased to four times of the set speed, and
the	minimum is	s 0.

12.5 Parameter checking

The following functions can be called at any time

12.5.1	Get the	logic	position	of	each	axis:
--------	---------	-------	----------	----	------	-------

Function	int adt8949_get_command_pos(int cardno,int axis,long		
	*pos)		
Function	Get the pulse count value sent by the card		
description			
Parameter	cardno Card number		
settings	axis 1~4 single axis		
settings	pos Pulse count		
Return value	0: Correct Non-0: Wrong		
Remark	This function can get the logic position of the axis at any		
	time; in case that the motor isn't out of step, pos value is		
	the current position of the axis.		

12.5.2 Get the value of motor AB phase encoder feedback counter:

Function	int adt8949_get_actual_pos(int cardno,int axis,long
	*pos)
Function	Get the actual position of each axis
description	
Parameter	cardno Card number
settings	axis Axis number (1-6), X-axis number of
	handwheel is 5, and Y-axis number is 6
	pos Pointer of actual position
Return value	0: Correct -1: Wrong
Remark	

12.5.3 Get current running speed of the axis (instantaneous speed):

Function	int adt8949_get_speed(int cardno,int axis,float		
	*speed);		
Function	Get current running speed of the axis (instantaneous		
description	speed)		
Parameter	cardno Card number		
settings	axis 1~4 single axis		
	INPA_AXISREG interpolation axis		
	speed Instantaneous speed, unit: mm/sec		
Return value	0: Correct Non-0: Wrong		
Remark	◆ If the number of feed axis is INPA_AXISREG, the		
	feedback is resultant speed;		

12.5.4 Query number of left segments in 10000 segments of interpolation cache zone:

Function	int adt8949_get_fifo_len(int cardno,int *len);		
Function	Query margin in interpolation cache zone		
description			
Parameter	cardno Card number		
settings	len Cache length variable to be gotten		
Return value	0: Correct Non-0: Wrong		
Remark	The interpolation cache zone has 10000 segments in		
	total. Interpolation data and cache events are stored in		
	different regions of the control card. An arc occupies		
	four segments of cache space, and a full circle occupies		
	eight segments of cache space. It is recommended to		
	issue motion data when the cache margin is greater than		
	8 segments. This function is used to query API. For		
	consecutive query, insert a Sleep(1) sentence between		
	two queries.		

12.5.5 Get arc length of two axes:

Function	int adt8949_get_arc2_length(unsigned char		
	arcmap,float pos[4],float Center[4],int dir,float *length);		
Function	Get arc length of two axes		
description			
Parameter	axismap Axis selection mapping flag, mark any		
settings	two axes in the space for plane arc interpolation		
	pos Target point coordinates of the arc		
	(relative to the current point)		
	Center Center coordinates of the arc (relative to		
	the current point)		
	dir Arc direction (1: clockwise; 0:		
	counterclockwise)		

	length	Arc length of two axes
Return value	0: Correct	Non-0: Wrong
Remark		

12.5.6 Get arc length of three axes:

Function	int adt8949_get_arc3_length(unsigned char		
	arcmap,float pos2[4],float pos3[4],float *length);		
Function	Get arc length of three axes		
description			
Parameter	arcmap Axis selection mapping flag; up to three		
settings	positions can be marked as 1, that is, support arc		
	interpolation of up to three axes		
	pos2 Second point coordinates of the arc (relative to		
	the current point)		
	pos3 Third point coordinates of the arc (relative to		
	the current point)		
	length Arc length of three axes		
Return value	0: Correct Non-0: Wrong		
Remark			

12.5.7 Get the latest error number of the system:

Function	int adt8949_get_syserr(int cardno,int *ErrNum);		
Function	Get the latest error number of the system		
description			
Parameter	cardno Card number		
settings	ErrNum Pointer of the system error number		
Return value	Remark: Get system error number regularly, and view		
	the running of the motion card		
Remark	◆		

12.5.8 Get stop data of each axis:

Function	int adt8949_get_stopdata(int cardno,int axis,int		
	*value);		
Function	Function: Get stop data of each axis		
description			
Parameter	cardno Card number		
settings	axis Axis number (1-4)		
	value Pointer of stop data (0: no error stop;		
	non-0: has limit, home or encoder Z phase signal triggers		
	stop):		
	bit0==1: positive limit triggers stop		
	bit1==1: negative limit triggers stop		
	bit2==1: home signal triggers stop		
	bit3==1: encoder Z phase signal triggers stop		
	bit4==1: external emergency stop signal		
	triggers stop		
Return value	0: Correct -1: Wrong		
Remark	• Remark: Stop data may appear in combination, e.g.		
	if both bit0 and bit1 are 1, positive limit and		
	negative limit are triggered, resulting in axis stop		
	♦ For consecutive query, insert a Sleep(1) sentence		
	between two queries, or else it will affect the		
	efficiency of the control card.		

12.6 Driving

12.6.1 Single axis quantitative motion:

Function	int adt8949_pmove(int cardno,int axis,float pos)	
Function	Single axis quantitative relative motion (PTP)	
	http://www.adtechcn.com 136	

description	Set the relation	ative position of axis motion, unit: mm
Parameter	cardno	Card number
settings	axis	Axis number (1~4)
	pos	>0: positive motion
		<0: negative motion
]	Range (+/- 9999999.999mm)
Return value	0: Correct	Non-0: Wrong state
Remark	♦ Befor	re writing drive command, be sure to set the
	accel	eration/deceleration parameters required by the
	speed	curve properly

12.6.2 Absolute coordinates quantitative driving:

Function	int adt8949	D_abs_pmove(int cardno,int axis,float pos)
Function	Absolute coo	ordinates quantitative driving, unit: mm
description		
Parameter	cardno	Card number
settings	axis	Axis number (1-4)
	pos	Unit: mm, (+/- 99999999999)
		>0: positive driving, <0: negative
	driving	
Return value	0: Correct	Non-0: Wrong state
Remark		

12.6.3 Single axis continuous driving:

Function	int adt8949_continue_move(int cardno,int axis,int dir);
Function	Absolute coordinates quantitative driving, unit: mm
description	
Parameter	cardno Card number

settings	axis	Axis number (1-4)
	pos	Unit: mm, (+/- 9999999.999)
		>0: positive driving, <0: negative driving
Return value	0: Correc	ct Non-0: Wrong state
Remark	Note: Be	efore writing drive command, be sure to set the
	speed parameters properly	

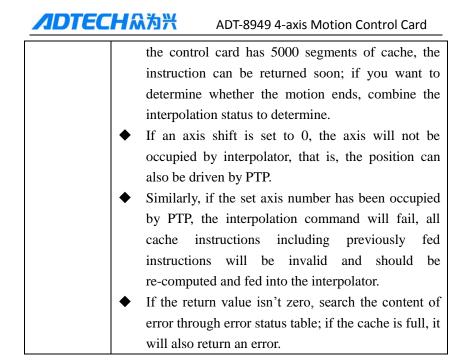
12.6.4 Two-axis arc interpolation:

Function	int adt8949_inp_arc2(int cardno,unsigned short	
	index, unsigned char arcmap, float pos[4], float	
	Center[4],int dir);	
Function	Two-axis arc interpolation, unit: mm	
description		
Parameter	cardno Card number	
settings	index Data index, used to identify the data of	
	the motion, generally set to 0 to	
	axismap Axis selection mapping flag, mark any two	
	axes in the space for plane arc interpolation	
	pos Target point coordinates of the arc	
	(relative to the current point)	
	Center Center coordinates of the arc (relative to	
	the current point)	
	dir Arc direction (1: clockwise; 0:	
	counterclockwise)	
Return value	0: Correct Non-0: Wrong state	
Remark	Axismap: axis mapping. AZYX correspond to binary.	
	0011 indicates that X, Y axis participate in two-axis arc	
	interpolation, 0110 indicates that Y, Z axis participate in	
	two-axis arc interpolation	

12.6.5 Three-axis arc interpolation instruction:

Function	int adt8949_inp_arc3(int cardno,int arcmap,float	
	pos2[4],float pos3[4])	
Function	Three-axis arc interpolation instruction	
description		
Parameter	cardno Card number	
settings	arcmap Arc participating in axes mapping mark	
	pos2[4] Coordinates of second point (relative to	
	current point)	
	pos3[4] Coordinates of third point (relative to current	
	point)	
Return value	0: Correct Non-0: Wrong	
Remark	◆ arcmap indicates arc axis, bit0 indicates 1# axis,	
	bit1 indicates 2# axis, and so on. Up to three-axis	
	flags appear;	
	◆ pos2, pos3 are coordinates of second and third	
	point.	

12.6.6 Four-axis interpolation instruction (absolute position):


Function	int adt8949_inp_abs_move4(int cardno,int axismap,float	
	pos1,float pos2,float pos3,float pos4)	
Function	Set four-axis interpolation instruction (absolute position)	
description		
Parameter	cardno Card number	
settings	axismap Axis mapping bit, bit0 indicates 1# axis, bit1	
	indicates 2# axis	
	pos1,pos2	
	pos3,pos4 Absolute position of the motor	
Return value	0: Correct Non-0: Wrong	

Remark	◆ The interpolation instruction will be cached. Since
	the control card has 5000 segments of cache, the
	instruction can be returned soon; if you want to
	determine whether the motion ends, combine the
	interpolation status to determine.
	• Axismap is used to identify the control axis; if the
	corresponding bit is marked as 0, it won't be
	processed regardless of pos value, and the card will
	automatically take the current position.
	◆ If an axis shift is set to 0, the axis will not be
	occupied by interpolator, that is, the position can
	also be driven by PTP.
	• Similarly, if the set axis number has been occupied
	by PTP, the interpolation command will fail, all
	cache instructions including previously fed
	instructions will be invalid and should be
	re-computed and fed into the interpolator.
	• If the return value isn't zero, search the content of
	error through error status table; if the cache is full, it
	will also return an error.

12.6.7 Four-axis interpolation instruction (relative position):

Function	int adt8949_inp_move4(int cardno,float pos1,float
	pos2,float pos3,float pos4)
Function	Set four-axis interpolation instruction (relative position)
description	
Parameter	cardno Card number
settings	pos1,pos2,pos3,pos4 shift relative to current point
Return value	0: Correct Non-0: Wrong
Remark	◆ The interpolation instruction will be cached. Since
	http://www.adtechcn.com 140

12.6.8 Four-axis relative coordinates linear interpolation (specifying motion time)

Function	int adt8949_time_move4(int cardno,unsigned short		
	index,float pos1,float pos2,float pos3,float pos4,float		
	time);		
Function	Set four-axis interpolation instruction (relative position)		
description			
Parameter	cardno Card number		
settings	index Data index, used to identify the data of the		
	motion, generally set to 0 to		
	pulse1,pulse2,pulse3,pulse4 indicate the relative distance		
	of axis XYZW		
	time Time required by motion of the straight line,		
	unit: ms		

Return value	0: Correct Non-0: Wrong
Remark	Note: The straight line moves at constant speed within
	the specified time. Before calling this function, ensure
	that the number of preprocessing segments is zero, or
	else the call will fail;
	If synchronized axis is set, pos parameter of slave axis
	should be set to 0, or else the call will fail.

12.6.9 Four-axis absolute coordinates linear interpolation (specifying motion time)

Function	int adt8949_time_abs_move4(int cardno,unsigned short index,unsigned char axismap,float pos1,float pos2,float
	pos3,float pos4,float time);
Function	Four-axis absolute coordinates linear interpolation
description	(specifying motion time)
Parameter	cardno Card number
settings	index Data index, used to identify the data of
	the motion, generally set to 0 to
	axismap Axis mapping bit, bit0 indicates 1# axis, bit1
	indicates 2# axis; if the axis is not marked, the target
	position will not take effect.
	pulse1,pulse2,pulse3,pulse4 indicate the coordinates that
	axis XYZW move to
	time Time required by motion of the straight line
	(non-cumulative time), unit: ms
Return value	0: Correct Non-0: Wrong
Remark	Note: The straight line moves at constant speed within
	the specified time. Before calling this function, ensure
	that the number of preprocessing segments is zero, or

else the call will fail. If synchronized axis is set, pos parameter of slave axis should be set to 0, and axismap value doesn't need to consider the slave axis position.

12.6.10 NURBS interpolation

Function	int adt8949_inp_NURBS(int cardno,unsigned short
	index, unsigned char axismap, float conp[][4], float
	weight[],float node[],int nodenum);
Function	NURBS interpolation
description	
Parameter	cardno Card number
settings	index Data index, used to identify the data of
	the motion, generally set to 0 to
	Axismap Axis selection mapping flag, only three
	positions can be marked to 1, that is, support NURBS
	interpolation up to three axes
	conp Spline control point (relative to the current
	point, the coordinates of first control point should be 0,
	or else it will return error)
	Weight Weight corresponding to control point of
	spline. The weight of each control point of AutoCAD is
	-1 by default
	node Node value of spline
	nodenum Number of spline nodes
Return value	0: Correct Non-0: Wrong
Remark	Remark: For NURBS interpolation, it is recommended to
	set a bigger number of pre-processing cache segments
	and use trapezoidal acceleration/deceleration mode;
	calling the function to set arc speed clamp will affect
	planning of spline interpolation speed;
	http://www.adtachar.com 142

Using spline interpolation will occupy a larger number of cache segments of control card. To continue to call interpolation instruction, check the remaining cache capacity in advance.

12.6.11 Set deceleration stop for manual intervention of axis

Function	int adt8949_dec_stop(int cardno,int axis)	
Function	Set deceleration stop for manual intervention of axis	
description	Deceleration is the effective value in the last setting	
	Manual intervention deceleration is allowed in linear	
	mode only	
Parameter	cardno Card number	
settings	axis Axis number (1~4)	
Return value	0: Correct Non-0: Wrong state	
Remark	• If the set axis participates in the interpolation, other	
	corresponding axes in the interpolation will be	
	decelerated to stop.	

12.6.12 Set immediate stop for manual intervention of axis

Function	int adt8949_sudden_stop(int cardno,int axis)	
Function	Set immediate stop for manual intervention of axis	
description		
Parameter	cardno Card number	
settings	axis Axis number (1~4)	
Return value	0: Correct Non-0: Wrong state	
Remark	• If the set axis participates in the interpolation, other	
	corresponding axes in the interpolation will be	
	decelerated to stop.	

/IDTECH众为兴

12.7 Switch quantity

12.7.1 Read IO status and read/write IO

Function	int adt8949_get_out(int cardno, int number)	
	int adt8949_read_bit(int cardno,int number)	
	int adt8949_write_bit(int cardno,int number,int value)	
Function	Get output IO status (gadt8949_et_out)	
description	Get input IO status (adt8949_read_bit)	
	Set output IO status (adt8949_write_bit)	
Parameter	cardno Card number	
settings	number Corresponding IO number, counting from 0	
Return value	-1 Get error	
	0 OFF state	
	1 ON state	
Remark		

12.7.2 Read IO status by groups

Function	int adt8949_get_gpio(int cardno,int gp,short int *map);		
Function	Read IO status by groups		
description			
Parameter	cardno Card number		
settings	gp Group number (the number of		
	OUT0~OUT15 is 0, the number of IN0~IN15 is 0x20,		
	the number of IN16~IN31 is 0x21)		
	map Status of this group of IO (determine the		
	status of certain IO through bit value, e.g. OUT0		
	corresponds to bit0, OUT15 corresponds to bit15)		
Return value	0: Low voltage level Non-0: Wrong		
Remark			

12.7.3 Operate output by group

Function	int adt8949_set_gpio(int cardno,int gp,short int map);		
Function	Operate output by group		
description			
Parameter	Card number		
settings	gp Group number (the number of		
	OUT0~OUT15 is 0; only output point settings of group		
	are available)		
	iomap Specify the output point to be operated by		
	bit (bit0~bit15); if the bit value is 1, operate		
	corresponding output point; if the bit value is 0, output		
	point isn't affected		
	levelmap Voltage level setting of this group of IO		
	(determine the status of certain output point through bit		
	value, e.g. OUT0 corresponds to bit0, OUT15		
	corresponds to bit15); only the output points with iomap		
	bit value 1 are affected		
Return value	0: Correct -1: Wrong		
Remark			

12.7.4 Set voltage level for multiple output points at the same time

Function	int adt8949_set_multi_io(int cardno,int gp,short int	
	iomap, short int levelmap);	
Function	Set voltage level for multiple output points at the same	
description	time	
Parameter	cardno	Card number
settings	gp	Group number (the number of

ADTEC	H ADT-8949 4-axis Motion Control Card		
	OUT0~OUT15 is 0; only output point settings of group		
	are available)		
	iomap Specify the output point to be operated by		
	bit (bit0~bit15); if the bit value is 1, operate		
	corresponding output point; if the bit value is 0, output		
	point isn't affected		
	levelmap Voltage level setting of this group of IO		
	(determine the status of certain output point through bit		
	value, e.g. OUT0 corresponds to bit0, OUT15		
	corresponds to bit15); only the output points with iomap		
	bit value 1 are affected		
Return value	0: Low voltage level Non-0: Wrong		
Remark			

12.8 FIFO operation output

12.8.1 Single point IO output in interpolation:

Function	int adt8949_set_fifo_io(int cardno,int number,int	
	value,float speed);	
Function	Single point IO output in interpolation	
description		
Parameter	cardno Card number	
settings	number Output point (0-14)	
	value 0: Low level 1: High level	
	speed -1: no speed constraint before motion by	
	default, other: range (0.0-100000.0 mm/sec)	
Return value	0: Low voltage level Non-0: Wrong	
Remark	Speed setting is same as the motion track speed, and	
	motion track won't decelerate. If the speed setting is	

smaller, the motion track will decelerate to the set speed in advance before corresponding IO operation, and then accelerate to motion track speed, and form V-shaped process.

12.8.2 Set voltage level for multiple output points at the same time in interpolation:

Function	int adt8949_set_fifo_multi_io(int cardno,int gp,short int		
	iomap, short int levelmap, float speed);		
Function	Set voltage level for multiple output points at the same		
description	time in interpolation		
Parameter	ccardno Card number		
settings	gp Group number (the number of		
	OUT0~OUT14 is 0; only output point settings of group		
	are available)		
	iomap Specify the output point to be operated by		
	bit (bit0~bit15); if the bit value is 1, operate		
	corresponding output point; if the bit value is 0, output		
	point isn't affected		
	levelmap Voltage level setting of this group of IO		
	(determine the status of certain output point through bit		
	value, e.g. OUT0 corresponds to bit0, OUT15		
	corresponds to bit15); only the output points with iomap		
	bit value 1 are affected		
	speed -1: no speed constraint before motion by		
	default, other: range (0.0-100000.0 mm/sec)		
Return value	0: Low voltage level Non-0: Wrong		
Remark	Speed setting is same as the motion track speed, and		
	motion track won't decelerate. If the speed setting is		

smaller, the motion track will decelerate to the set speed in advance before corresponding IO operation, and then accelerate to motion track speed, and form V-shaped process.

12.8.3 Specific position delay motion in interpolation:

Function	int adt8949_set_fifo_delay(int cardno,int millisecond);	
Function	Specific position delay motion in interpolation	
description		
Parameter	cardno	Card number
settings	millisecond	delay time, unit: ms
Return value	0: Correct	Non-0: Wrong
Remark		

12.8.4 Insert pulse generator in interpolation:

Function	int adt8949_set_fifo_pulser(int cardno,int port,int		
	NormalLevel, int NormalTime, int UnNormalTime, int		
	ReverseNum,floa	tt speed);	
Function	Insert pulse gener	Insert pulse generator in interpolation	
description			
Parameter	cardno	Card number	
settings	port	Output point port of pulse generator	
	(0-14)		
	NormalLevel	Normal state voltage level 0: Low,	
	1: High		
	NormalTime	Holding time of normal level, unit:	
	ms		
	UnNormalTime	Holding time of non-normal	

	level, unit: ms	
	ReverseNum Reverse times of output level	
	speed -1: no speed constraint before motion by	
	default, other: range (0.0-100000.0 mm/sec)	
Return value	0: Correct Non-0: Wrong	
Remark	Speed setting is same as the motion track speed, and	
	motion track won't decelerate. If the speed setting is	
	smaller, the motion track will decelerate to the set speed	
	in advance before corresponding IO operation, and then	
	accelerate to motion track speed, and form V-shaped	
	process.	

12.9 Handwheel function

12.9.1 Set handwheel mode

Function	int adt8949_set_hand_wheel_mode(int cardno,int	
	axis,int fun_mode);	
Function	Set handwheel mode	
description		
Parameter	cardno Card number	
settings	axis Axis number (5-6), X-axis number of	
	handwheel is 5, and Y-axis number is 6	
	fun_mode Function mode, 0: General input port	
	mode; 1: Handwheel encoder signal input mode	
Return value	0: Correct -1: Wrong	
Remark	Remark: After using handwheel function, set to slow	
	input point mode in time, or else it will affect the	
	efficiency of the wiring board.	
	Slow input point mode is default. After setting to	
	handwheel encoder signal input mode, the default mode	
	is PPIN/PMIN pulse input and input signal direction	

ADT-8949 4-axis Motion Control Card

positive logic; to modify encoder input signal type or direction logic, please call the function adt8949_set_actual_count_mode(...).

12.10 DA output

12.10.1 Set DA output voltage:

Function	int adt8949_set_daout(int cardno,int port,int value);	
Function	Set DA output voltage	
description		
Parameter	cardno Card number	
settings	port Set DA output port (1-2)	
	value Set DA output size (0-10), unit: V	
Return value	0: Correct Non-0: Wrong	
Remark	DA output voltage is accurate to two decimal places	

13.11 Homing module

13.11.1 Set home signal mode:

Function	adt8949_SetHomeMode_Ex(int m_nCardNum,int	
	m_nAxisNum,int m_nHomeDir, int	
	m_nStop0Active,int m_nLimitActive,int	
	m_nStop1Active,long m_nBackRange,long	
	m_nEncoderZRange,lon	g m_nOffset);
Function	Set home signal, step parameter	
description		
Parameter	m_nCardNum	Card number
settings	m_nAxisNum	Axis number
	m_nHomeDir	Home direction, 0:
	negative direction, 1: positive direction	

ADTEC	H (1) ADT-8949 4-axis Motion Control Card	
	m_nStop0Active stop0 active level	
	setting; 0: Low level stop; 1: High level stop	
	m_nLimitActive limit signal active level	
	setting; 0: Low level stop; 1: High level stop	
	m_nStop1Active stop1 active level	
	setting; 0: Low level stop; 1: High level stop	
	m_fBackRange Reverse distance >1,	
	shouldn't exceed the distance between positive	
	limit and stop0	
	m_fEncoderZRange Encoder Z phase	
	range >1	
	m_fOffset Home offset; ==0: No, >0:	
	positive direction, <0: negative direction	
Return value	0: Correct -1~-8: Wrong type	
	-1: Parameter error	
	-2: Parameter error	
	-3: Parameter error	
	-4: Parameter error	
	-5: Parameter error	
	-6: Parameter error	
	-7: Parameter error	

13.11.2 Homing speed parameter setting:

Function	adt8949_SetHomeSpeed _Ex(int m_nCardNum,int	
	m_nAxisNum,long m_nStartSpeed,long	
	m_nSearchSpeed,long m_nHomeSpeed,long	
	m_nAcc,long m_nZPhaseSpeed);	
Function	Set home signal, step parameter	
description		
Parameter	m_nCardNum Card number	

settings	m_nAxisNum	Axis number
	m_nStartSpeed	Home (STOP0) search start
	speed	
	m_nSearchSpeed	Home search speed
	m_nHomeSpeed	Slow homing speed
	m_nAcc	Acceleration in homing process
	m_nZPhaseSpeed	Encoder Z phase (STOP1) search
	speed	
Return value	0: Correct	-1~-8: Wrong type
	-x: x parameter en	rror

13.11.2 Start homing:

Function	adt8949_HomeProcess _Ex(int m_nCardNum,int	
	m_nAxisNum,float m_fGear);	
Function	Set home signal, step parameter	
description		
Parameter	m_nCardNum	Card number
settings	m_nAxisNum	Axis number
	m_fGear	Electronic gear ratio:(1-10000)
Return value	0: Correct	-1~-3: Parameter error
	-x: x parameter error	

13.11.4 Get home status:

Function	adt8949_GetHomeStatus _Ex(int m_nCardNum,int	
	m_nAxisNum);	
Function	Get home status, step parameter	
description		
Parameter	m_nCardNum Card number	

ADT-8949 4-axis Motion Control Card

settings	m_nAxisNum Axis number	
C	m_fGear Electronic gear ratio: (1-10000)	
Return value	0: Home successfully; -1: Parameter 1 error; -2:	
	Parameter 2 error; -3: Homing isn't started;	
	(1-10) steps 1: Approach home fast and search	
	STOP0	
	2: Check if STOP0 is found	
	3: Exit home reversely	
	4: Check if reverse exit is complete	
	5: Approach home slowly and search	
	STOP0	
	6: Check if STOP0 searching completes	
	7: Approach Z phase slowly, and search	
	STOP1. If STOP1 is set to -1, skip step 7 & 8.	
	8: Check if STOP1 searching completes	
	9: Home offset	
	10: Check home offset	
	-100x: The x homing step is abnormal,	
	e.g.: -1001: the first homing step is abnormal	
	-1020: Homing is terminated	

Chapter 13 Troubleshooting

13.1 Motion control card detections fails

If the control card can be detected in the process of using the control card, please follow the method below to eliminate the problem.

(1) Be sure to follow the installation instructions of the control card to install the drivers step by step, and make sure that the system directory (system32 or System) has the control card dll file;

- (2) Check if the motion control card and the socket contact properly. You can re-insert or replace the slot to test, or clean the gold finger of the control card with an eraser before test;
- (3) In System Device Manager, check if the motion control card conflicts with other hardware. When using PCI cards, remove other boards and cards, such as: sound card and network card; PC104 card allows adjusting DIP switch to reset the base address; the base address used for card initialization in the program must be same as the actual base address;
- (4) Check if the operating system has any problem by re-installing other operating systems;
- (5) If the motion control card still can't be detected after examination with the above steps, please replace the motion control card, and further test if the motion control card has been damaged;

13.2 Motor running abnormal

If the motion control card is normal, but the motor is abnormal, refer to the following troubleshooting method.

- (1) The motor doesn't run when the motion control card sends pulses
 - Check if the control card and the terminal board are connected properly;
 - Check if the pulse and direction signal cables of the motor drive are properly connected to the terminal board;
 - Check if the external power of the servo drive has been connected properly;
 - Check if the servo and stepper motor drive have alarm; if yes, check the reason according to the alarm code;
 - Check if servo SON is connected properly, and if the servo motor has excitation status;
 - For servo motor, please check the drive control; the control card supports "position control mode";
 - Motor or drive is damaged
- (2) The stepper motor screams in operation, motor is significantly out of step.

- Controller speed is too high; please calculate the motor speed, 10~15 rotations per second is normal for stepper motor;
- Mechanical part is stuck or too much resistance;
- Motor selection is inappropriate; please replace a motor of high torque;
- Check the drive current and voltage, set the current to 1.2 times the rated current of the motor, and set the supply voltage within the rated range of the drive;
- Check the initial speed of the controller, which is generally 0.5~1; deceleration time is 0.1 second or more;
- (3) Servo or stepper motor has significant vibration or noise during processing
 - Position loop gain and speed loop gain of servo drive are too large, reduce the position loop gain and speed loop gain of the servo drive in permitted positioning accuracy;
 - Machine rigidity is poor; please adjust the structure of the machine;
 - Stepper motor selection is inappropriate; please replace a motor of high torque;
 - The speed of stepper motor is in the resonance region of the motor, please avoid the resonance region or increase the subdivision;
- (4) Motor positioning inaccurate
 - Check if the mechanical screw pitch and number of pulses per revolution of the motor and are consistent with the parameters set by the practical application system, i.e. pulse equivalent;
 - For servo motor, increase the position loop gain and speed loop gain;
 - Check the screw gap of the machine, test the backlash of lead screw with a dial gauge, and adjust the screw if there is gap;
 - If the time and position of inaccurate positioning are indefinite, check the external interference signal;
 - Motor selection is inappropriate, and shake or out of step occurs in motion;
- (5) The motor has no direction

- Check if the DR+ and DR- wiring have error, and are connected securely;
- Check if the pulse mode of the control card is consistent with the actual drive mode; the control card supports "pulse + direction" and "pulse + pulse" mode
- For stepper motor, check if the motor lines have breakage or poor contact;

13.3 Switch input abnormal

In the process of system commissioning and operation, if some input signals are abnormal, please use the method described below to check.

- (1) No signal input
 - Check if the wiring is correct according to the wiring diagram of common switch and proximity switch, and ensure that the "optocoupler common terminal" of input signal has been connected to the positive terminal of internal or external power supply (+ 12V or 24V);
 - The I\O point input switch of the company is NPN type; if not available, please check the switch model and wiring;
 - Check if the optical coupler has been damaged. If the line is normal, the input state does not change when the input point is opened and closed; please use a multimeter to test if the optical coupler has been broken down, and solve the breakdown problem by replacing the optical coupler;
 - Check if 12V or 24V switching power supply is normal;
 - The switch is damaged;
- (2) Signal is intermittent
 - Check if there is interference, and test the signal status in I\O test screen; if interference exists, add model 104 monolithic capacitor or use shielded lines;
 - The machine has significant shake or unusual stop during normal operation; please check if the limit switch signal has interference or if the limit switch has reliable performance;
 - Check if external wiring is in proper contact;

- (3) Inaccurate homing
 - Speed too fast; reduce homing speed;
 - External signal interference; check the sources of interference;
 - Homing direction error;
 - Homing switch is installed in improper position or switch is loose;
- (4) Invalid limit
 - ➢ In I∖O test, check if the limit switch is valid;
 - Manual or automatic processing speed is too fast;
 - External signal interference; check the sources of interference;
 - Manual direction error;
 - Limit switch is installed in improper position or switch is loose;

13.3 Switch output abnormal

Switch output is abnormal; please troubleshoot in the method described below.

- (1) Output abnormal
 - Check if the lines are correct according to the wiring diagram of the output points described earlier, and ensure that the common output terminal (ground wire) is connected to the ground wire of the power supply;
 - Check if the output device has been damaged;
 - Check if the optical coupler has been damaged; please use a multimeter to test if the optical coupler has been broken down, and solve the breakdown problem by replacing the optical coupler;
 - Security essentials; when the output uses inductive load, connect a freewheeling diode (IN4007 model or IN4001) in parallel;
- (2) Method to determine output problem

Disconnect the external wiring of output point, connect a 10K pull-up resistor from the output point to the power supply

terminal; connect the output ground wire to GND terminal of the power, put the red pen of the multimeter on the 12V positive pole, put the black pen on the output terminal, and tap the button on the test screen to check if there is voltage output; if yes, check external circuit; if not, check if the common terminal of the card is connected properly, and if the optical coupler has problem;

13.4 Encoder abnormal

If the encoder is abnormal while operating, please check in the method below.

- (1) Check encoder wiring. Make sure that the wiring of encoder complies with differential or collector open circuit mode previously introduced;
- (2) Check encoder voltage. The motion control card accepts +5V signal. If +12V or +24V encoder is used, please connect 1K (+12V) resistor in serial between A/B phase of the encoder and A/B phase of terminal board;
- (3) Encoder counting is inaccurate. The external wire of the encoder must be shielded twisted pair, and the encoder wire should be at least 30~50MM away from the strong electric wires that have strong interference;